Journal Articles


  1. Zhong J.W., Li P.X., Liang M.H., and Ai Y., Label-free cell viability assay and enrichment of cryopreserved cells using microfluidic cytometry and on-demand sorting, Advanced Materials Technologies, 2021, Accepted. Link
  2. Tayebi M., Yang D.H., Collins D.J., and Ai Y., Deterministic sorting of submicron particles and extracellular vesicles using a combined electric and acoustic field, Nano Letters, 2021, 21(16): 6835-6842. Link
  3. Zhong J.W., Liang M.H., and Ai Y., Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes, Lab on a Chip, 2021, 21: 2869-2880 (Featured on the cover page)Link
  4. Li P.X., Zhong J.W., Liu N., Lu X.G., Liang M.H., and Ai Y., Physical properties-based microparticle sorting at submicron resolution using a tunable acoustofluidic device, Sensors and Actuators B: Chemical, 2021, 344: 130203. Link
  5. Lu X.G., Chow J.M., Koo S.H., Jiang B.R., Tan T.Y., Yang D.H., and Ai Y., Sheathless and high-throughput elasto-inertial bacterial sorting for enhancing molecular diagnosis of bloodstream infection, Lab on a Chip, 2021, 21: 2163-2177 (Featured on the cover page). Link
  6. Lu X.G, Tayebi M., and Ai Y., A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood, Electrophoresis, 2021, accepted. Link
  7. Liang M.H., Yang D.H., Zhou Y.N., Li P.X., Zhong J.W., and Ai Y., Single cell stretching in viscoelastic fluids with electronically triggered imaging for cellular mechanical phenotyping, Analytical Chemistry, 2021, 93(10): 4567–4575. Link
  8. Li P.X. and Ai Y., Label-free multivariate biophysical phenotyping-activated acoustic sorting at the single-cell level, Analytical Chemistry, 2021, 93(8): 4108–4117. Link
  9. Zhong J.W., Yang D.H., Zhou Y.N., Liang M.H., and Ai Y., Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis, Analyst, 2021, 146(6): 1781-2084 (Featured on the cover page)Link


  1. Lu X.G., Chow J.M., Koo S.H., Tan T.Y., Jiang B.R., and Ai Y., Enhanced molecular diagnosis of bloodstream Candida infection with size-based inertial sorting at submicron resolution, Analytical Chemistry, 2020, 92: 15579–15586. Link
  2. Zhou Y.N., Ma Z.C., and Ai Y., Submicron particle concentration and patterning with ultra-low frequency acoustic vibration, Analytical Chemistry, 2020, 92: 12795-12800. (Featured on the cover pageLink
  3. Ma Z.C., Zhou Y.N., Cai F.Y., Meng L., Zheng H.R., and Ai Y., Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells, Lab on a Chip, 2020, 20(16): 2947-2953. Link
  4. Xu C.P., Ai Y., Zheng T.F., and Wang C.H., Acoustic manipulation of breathing MOFs particles for self-folding polymer film preparation, Sensors and Actuators: A. Physical, 2020, 315: 112288. Link
  5. Tayebi M., Zhou Y.N., Tripathi P., Chandramohanadas R., and Ai Y., Exosome purification and analysis using a facile microfluidic hydrodynamic trapping device, Analytical Chemistry, 2020, 92(15): 10733-10742. Link
  6. Devendran C., Choi K.Y., Han J., Ai Y., Neild A., Collins D., Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing, Lab on a Chip, 2020, 20(15): 2674-2688. Link
  7. Zhou Y.N., Wang H., Ma Z.C., Yang J.K.W. and Ai Y., Acoustic vibration-induced actuation of multiple micro-rotors in microfluidics, Advanced Materials Technologies, 2020, 2000323. Link
  8. Raymond S., Collins D.J., O’Rorke R., Taybi M., Ai Y., and Williams J., A deep learning approach for designed diffraction-based acoustic patterning in microchannels, Scientific Reports, 2020, 10: 8745. Link
  9. O’Rorke R., Winkler A., Collins D.J., and Ai Y., Slowness curve surface acoustic wave transducers for optimized acoustic streaming, RSC Advances2020, 10: 11582 – 1158. Link
  10. Taybi M., O’Rorke R., Wong H.C., Low H.Y., Han J., Collins D.J., and Ai Y., Massively multiplexed sub-micron particle patterning in acoustically driven oscillating nanocavities, Small, 2020: 2000462. (Featured on the cover page and in; EurekAlert Science News; Nano WerkSUTD NewsLink
  11. Zhou Y.N., Ma Z.C., and Ai Y., Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics, Lab on a Chip, 2020, 20: 568-581. Link
  12. Liu S.M., Chen J.J., Ai Y., and Rahardja S., An Optimized Quantization Constraints Set for Image Restoration and Its GPU Implementation, IEEE Transactions on Image Processing, 2020, 29: 6043-6053. Link


  1. Li P.X., Liang M.H., Lu X.G., Chow J.M., Ramachandra C.J.A., and Ai Y., Sheathless acoustic fluorescence activated cell sorting (aFACS) with high cell viability, Analytical Chemistry, 2019, 91(24): 15425-15435. (Featured in; EurekAlert Science News; Bioengineer; SUTD News). Link
  2. Collins D.J., O’Rorke R., Neild A., Han J., and Ai Y., Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves, Soft Matter, 2019, 15(43): 8691-8705. (Featured on the cover page) Link
  3. Zhou Y.N., Ma Z.C., and Ai Y., Hybrid microfluidic sorting of rare cells based on high throughput inertial focusing and high accuracy acoustic manipulation, RSC Advances, 2019, 9: 31186-31195. Link
  4. Yang D.H. and Ai Y., Microfluidic impedance cytometry with N-shaped electrodes for lateral position measurement of single cells/particles, Lab on a Chip, 2019, 19: 3609-3617. (This article is part of the themed collection: Lab on a Chip Emerging Investigators, Lab Chip Blog, also featured on the cover page and in; EurekAlert Science News; SciTechDaily; Bioengineer; SUTD NewsLink
  5. Taybi M., Tavakkoli Yaraki M., Yang H.Y., and Ai Y., A MoS2-MWCNT based fluorometric nanosensor for exosome detection and quantification, Nanoscale Advances, 2019, 1: 2866-2872. (Featured on the cover page) Link
  6. Li P.X., Ma Z.C., Zhou Y.N., Collins D.J., Wang Z.F., and Ai Y., Detachable acoustophoretic system for fluorescence activated sorting at the single-droplet level, Analytical Chemistry, 2019, 91(15): 9970-9977. (Featured on the cover page and SUTD NewsLink
  7. Zhong S., Ji X.L., Zhou Y.N., Zhang Y.S., Ai Y., and Zhao R., CMOS compatible transient resistive memory with prolonged lifetime, Advanced Materials Technologies, 2019, 4(9): 1900217. Link
  8. Zhou Y.N., Ma Z.C., Tayebi M., and Ai Y., Submicron particle focusing and exosome sorting by wavy microchannel structures within viscoelastic fluids, Analytical Chemistry, 2019, 91(7): 4577-4584. Link
  9. Yang D.H., Zhou Y., Zhou Y.N., Han J., and Ai Y., Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes, Biosensors & Bioelectronics, 2019, 133: 16-23. Link
  10. Chen F., Guo L., Ai Y., Hou X., and Yang H.Y., Determination of boron concentration in aqueous solutions based on conductivity measurement: a boron sensor based on conductivity measurement, International Journal of Environmental Science and Technology, 2019, 16(3): 1711–1716. Link


  1. O’Rorke R., Collins D.J., and Ai Y., A rapid and meshless analytical model of acoustofluidic pressure fields for waveguide design, Biomicrofluidics, 2018, 12: 024104. Link
  2. Zhou Y.N., Ma Z.C., and Ai Y., Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures, Microsystems & Nanoengineering, 2018, 4: 5. Link (Featured in Science DailyEurekAlert Science
  3. Collins D.J., O’Rorke R., Devendran C., Ma Z.C., Neild A., Han J., and Ai Y., Self-aligned acoustofluidic particle focusing and patterning in microfluidic channels from channel based acoustic waveguides, Physical Review Letters, 2018, 120(7): 074502.Link (Highlighted by the editors as an Editors’ Suggestion and Featured in Physics)
  4. Liu S.M., Chen J.J., Chang C.H., and Ai Y., A new accurate and fast homography computation algorithm for sports and traffic video analysis, IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28 (10): 2993-3006. Link
  5. Zhou Y., Yang D.H., Zhou Y.N., Khoo B.L., Han J., and Ai Y., Characterizing deformability and electrical impedance of cancer cells in a microfluidic device, Analytical Chemistry, 2018, 90: 912-919. Link


  1. Ma Z.C., Zhou Y.N., Collins D.J., and Ai Y., Fluorescence activated cell sorting via a focused traveling surface acoustic beam, Lab on a Chip, 2017, 17: 3176-3185. Link (Featured in Science DailyEurekAlert Science NewsPhys.orgMedgadget;  Asian Scientist MagazineGlobal Health NewsSina)
  2. Yang D.H., Subramanian G., Duan J.M., Gao S.B., Bai L., Chandramohanadas R., and Ai Y., A portable image-based cytometer for rapid malaria detection and quantification, PLOS One, 2017, 12(6): e0179161. Link (Featured in The Straits Times)
  3. Kishor R., Ma Z.C., Sreejith S., Seah Y.P., Wang H.Y., Ai Y., Wang Z.F., Lim T.T., and Zheng Y.J., Real time size-dependent particle segregation and detection in a surface acoustic wave-photoacoustic integrated microfluidic system, Sensors and Actuators B: Chemical, 2017, 252: 568-576. Link
  4. Collins D.J., Khoo B.L., Ma Z.C., Winkler A., Weser R., Schmidt H., Han J.Y., and Ai Y., Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming, Lab on a Chip, 2017, 17: 1769-1777. Link
  5. Devendran C., Collins D.J., Ai Y., and Neild A., Huygens-Fresnel acoustic self-interaction and the development of robust time-averaged patterns from travelling surface acoustic waves, Physical Review Letters, 2017, 118: 154501. Link
  6. Chen F.M., Ai Y., and Yang H.Y., Boron detection and quantification based on the absorption spectra of pyridoxine and its boron complex, Environmental Chemistry, 2017, 14: 135-140. Link
  7. Xi H.D., Zheng H., Guo W., Ganan-Calvo A.M., Ai Y., Tsao C.W., Zhou J., Li W.H., Huang Y.Y., Nguyen N.T., and Tan S.H., Active droplet sorting in microfluidics: a review, Lab on a Chip, 2017, 17: 751-771. Link
  8. Ma Z.C., Collins D.J., and Ai Y., Single-actuator bandpass microparticle filtration via traveling surface acoustic waves, Colloids and Interface Science Communications, 2017, 16: 6-9. Link
  9. Collins D.J., Ma Z.C., Han J.Y., and Ai Y., Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves, Lab on a Chip, 2017, 17: 91–103. (Featured as the front cover article) Link


  1. Ma Z.C., Collins D.J., Guo J.H., and Ai Y., Mechanical properties based particle separation via traveling surface acoustic wave, Analytical Chemistry, 2016, 88 (23): 11844–11851. Link
  2. Ma Z.C., Teo A.J.T., Tan S.H., Ai Y., and Nguyen N.T., Self-aligned interdigitated transducers for acoustofluidics, Micromachines, 2016, 7: 216. (Featured as the front cover article) Link
  3. Yang D.H., Taybi M., Huang Y.X., Yang H.Y., and Ai Y., A microfluidic DNA sensor based on three dimensional (3D) hierarchical MoS2/carbon nanotube nanocomposites, Sensors, 2016, 16: 1911. Link
  4. Ng J.A., Collins D.J., Devendran C., Ai Y. and Neild A., Flow-rate insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves, Microfluidics and Nanofluidics, 2016, 20: 151. Link
  5. Fakhfouri A., Devendran C., Collins D.J., Ai Y. and Neild A., Virtual membrane for filtration of particles using surface acoustic waves (SAW), Lab on a Chip, 2016,16: 3515-3523. Link
  6. Collins D.J., Devendran C., Ma Z.C., Ng J.A., Neild A., and Ai Y., Acoustic tweezers via sub time-of-flight regime surface acoustic waves, Science Advances, 2016, 2: e1600089.Link
  7. Collins D.J., Ma Z.C., and Ai Y., Highly localized acoustic streaming and size-selective sub-micron particle concentration using high frequency microscale focused acoustic fields, Analytical Chemistry, 2016, 88: 5513–5522. Link
  8. Ma Z.C., Collins D.J., and Ai Y., Detachable acoustofluidic system for particle separation via a travelling surface acoustic wave, Analytical Chemistry, 2016, 88: 5316–5323. Link
  9. Collins D.J., Neild A., and Ai Y., Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting, Lab on a Chip, 2016, 16: 471-479. (Featured as the front cover article) Link


  1. Huang Y.X., Guo J.H., Kang Y.J., Ai Y., and Li C.M., Preparation of two dimensional atomically thin MoS2 nanosheets and their sensing applications, Nanoscale, 2015, 7: 19358-19376. Link
  2. Guo J.H., Huang X.W., and Ai Y., On-demand lensless single cell imaging activated by differential resistive pulse sensing, Analytical Chemistry, 2015, 87: 6516-6519. Link
  3. Collins D.J., Neild A., deMello A., Liu A.Q., and Ai Y., The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation, Lab on a Chip, 2015, 15: 3439-3459. (Lab on a Chip 2015 Most Downloaded Articles) Link
  4. Ma Z.C., Guo J.H., Liu Y.J., and Ai Y., The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect, Nanoscale, 2015, 7: 14047-14054. Link
  5. Huang Y.X., Yang H.Y., and Ai Y., DNA single-base mismatch study using graphene oxide nanosheets based fluorometric biosensor, Analytical Chemistry, 2015, 87 (18): 9132–9136. Link
  6. Guo J.H., Kang Y.J., and Ai Y., Radiation dominated acoustophoresis driven by surface acoustic waves, Journal of Colloid and Interface Science, 2015, 455(1): 203-211. Link
  7. Guo J.H., Kang Y.J., and Ai Y., Disposable microfluidic channel with dielectric layer on PCB for AC sensing of biological cells, IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1439-1443. Link
  8. Shi D.Y., Guo J.H., Chen L., Xia C.C., Yu Z.F., Ai Y., Li C.M., Kang Y.J., and Wang Z.M., Differential microfluidic sensor on PCB for biological cells analysis, Electrophoresis, 2015, 36(16): 1854-1858. Link
  9. Guo J.H., Liu X.H., Kang K., Ai Y., Wang Z.M., and Kang Y.J., A compact optofluidic cytometer for detection and enumeration of tumor cells, Journal of Lightwave Technology, 2015, 33(16): 3433-3438. Link
  10. Guo J.H., Chen L., Ai Y., Chen Y.B., Li C.M., Kang Y.J., and Wang Z.M., Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells, Electrophoresis, 2015, 36(5): 737-743. Link
  11. Guo J.H., Ai Y., Chen Y.B., Li C.M., Kang Y.J., and Wang Z.M., Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate, Electrophoresis, 2015, 36(16): 1862-1865. Link
  12. Huang Y.X., Shi Y.M., Yang H.Y., and Ai Y., A novel single-layered MoS2 nanosheets based microfluidic biosensor for ultrasensitive detection of DNA, Nanoscale, 2015, 7: 2245-2249. Link
  13. Puttaswamy S.V., Xue P., Kang Y.J., and Ai Y., Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices, Biomedical Microdevices, 2015, 17: 4. Link
  14. Guo J.H., Huang X.W., Li C.M., Ai Y., and Kang Y.J., Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor, Electrophoresis, 2015, 36: 420-423. Link


  1. Guo J.H., Huang X.W., Shi D.Y., Yu H., Ai Y., Li C.M., and Kang Y.J., Portable resistive pulse-activated lens-free cell imaging system, RSC Advances, 2014, 4: 56342-56345. Link
  2. Zeng Z.P., Ai Y., and Qian S., pH-regulated ionic current rectification in conical nanopores functionalized by polyelectrolyte brushes, Physical Chemistry Chemical Physics, 2014, 16: 2465–2474. Link
  3. Ai Y., Zeng Z.P., and Qian S., Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions, Journal of Colloid and Interface Science, 2014, 417: 72−79. (Featured as the front cover article) Link


  1. Ai Y., Sanders C.K., and Marrone B.L., Separation of E. coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves, Analytical Chemistry, 2013, 85(19): 9126−9134. Link

Book and Book Chapter

  1. Qian S. and Ai Y., Electrokinetic Particle Transport in Micro/Nanofluidics: Direct Numerical Simulation Analysis, CRC Press Taylor & Francis Group, ISBN: 9781439854389, Boca Raton, Florida, USA, 2012.
  2. Ai Y. and Qian S., Field Effect Control of Ion, Fluid, and Particle Transport in Micro/Nanofluidics. In Encyclopedia of Surface and Colloid Science, CRC Press Taylor & Francis Group, New York, USA, 2012.

Pre-group Publications

  1. Ai Y. and Marrone B.L., Droplet translocation by focused surface acoustic waves. Microfluidics and Nanofluidics, 2012. 13: 715-722.
  2. Hu N., Ai Y., and Qian S., Field effect control of electrokinetic transport in micro/nanofluidics. Sensors and Actuators B: Chemical, 2012. 161(1): 1150-1167.
  3. Zhang M.K., Ai Y., and Qian S., Electrophoretic motion of a soft spherical particle in a nanopore. Colloids and Surfaces B: Biointerfaces, 2011. 88(1): 165-174.
  4. Ai Y., Liu J., Zhang B.K., and Qian S., Ionic current rectification in a conical nanofluidic field effect transistor. Sensors and Actuators B: Chemical, 2011. 157 (2): 742-751.
  5. Hu N., Yang J., Yin Z., Ai Y., Qian S., Svir I.B., Xia B., Yan J., Hou W., and Zhen X., A high-throughput dielectrophoresis-based cell electrofusion microfluidic device. Electrophoresis, 2011. 32(18): 2488-2495.
  6. Ai Y., Mauroy B., Sharma A., and Qian S., Electrokinetic motion of a deformable particle: dielectrophoretic effect. Electrophoresis, 2011. 32(17): 2282-2291.
  7. Zhang M.K., Ai Y., Sharma A., and Qian S., Manipulation of particle translocation through a nanopore using a floating electrode. Electrophoresis, 2011. 32(14): 1864-1874.
  8. Ai Y. and Qian S., Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach. Electrophoresis, 2011. 32(9): 996-1005.
  9. Zhang B.K., Ai Y., Liu J., Joo S.W., and Qian S., Polarization effect of dielectric membrane on the ionic current rectification in a conical nanopore. Journal of Physical Chemistry C, 2011. 115(50): 24951–24959.
  10. Ai Y. and Qian S., Electrokinetic particle translocation through a nanopore. Physical Chemistry Chemical Physics, 2011. 13(9): 4060-4071.
  11. Ai Y., Liu J., Zhang B.K., and Qian S., Field effect regulation of DNA translocation through a nanopore. Analytical Chemistry, 2010. 82(19): 8217-8225.
  12. Ai Y., Yalcin S.E., Gu D., Baysal O., Baumgart H., Qian S., and Beskok A., A low-voltage nano-porous electroosmotic pump. Journal of Colloid and Interface Science, 2010. 350(2): 465-470.
  13. Liang L.T., Ai Y., Zhu J.J., Qian S., and Xuan X.C., Wall-induced lateral migration in particle electrophoresis through a rectangular microchannel. Journal of Colloid and Interface Science, 2010. 347(1): 142-146. (Selected as Cover Article of Vol. 347)
  14. Ai Y. and Qian S., DC dielectrophoretic particle-particle interactions and their relative motions. Journal of Colloid and Interface Science, 2010. 346(2): 448-454. (Selected as Cover Article of Vol. 346)
  15. Ai Y., Zhang M.K., Joo S.W., Cheney M.A., and Qian S., Effects of electroosmotic flow on ionic current rectification in conical nanopores. Journal of Physical Chemistry C, 2010. 114(9): 3883-3890.
  16. Ai Y., Park S., Zhu J.J., Xuan X.C., Beskok A., and Qian S., DC electrokinetic particle transport in an L-shaped microchannel. Langmuir, 2010. 26(4): 2937-2944.
  17. Ai Y., Qian S., Liu S., and Joo S.W., Dielectrophoretic choking phenomenon in a converging-diverging microchannel. Biomicrofluidics, 2010. 4(1): 013201.
  18. Ai Y., Beskok A., Gauthier D.T., Joo S.W., and Qian S., DC electrokinetic transport of cylindrical cells in straight microchannels. Biomicrofluidics, 2009. 3(4): 044110. (Selected for publication in Virtual Journal of Biological Physics Research, December 2009)
  19. Ai Y., Joo S.W., Jiang Y., Xuan X.C., and Qian S., Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force. Electrophoresis, 2009. 30(14): 2499-2506.
  20. Ai Y., Joo S.W., Jiang Y., Xuan X.C., and Qian S., Pressure-driven transport of particles through a converging-diverging microchannel. Biomicrofluidics, 2009. 3(2): 022404.
  21. Song X.H., Liu S., Gan Z.Y., Yan H. and Ai Y., Contact configuration modification at carbon nanotube-metal interface during nanowelding. Journal of Applied Physics, 2009. 106: 124308.
  22. Qian S., Joo S.W., Ai Y., Cheney M.A., and Hou W., Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Journal of Colloid and Interface Science, 2009. 329(2): 376-383.