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Abstract

In this paper, multiple relays capable of harvesting energy from radio-frequency (RF) signals are

employed to collaboratively forward data from a source transmitter to its destined receiver. Due to

the relays’ inability to harvest energy and transmit data simultaneously, the source needs to optimally

schedule the relays’ energy harvesting (EH) and data transmission. Considering different channel con-

ditions and energy constraints, the relays need to optimally design a beamforming vector that specifies

each relay a power amplifier coefficient to forward the source signal and suppress the noise. By joint

EH scheduling and beamforming, we maximize the overall throughput formulated in a non-convex

problem. We first propose a centralized scheme that achieves the optimal throughput by exploiting the

monotonicity in the problem structure. We further propose a distributed sub-optimal scheme in a game

theoretic approach, which requires the source and the relays to iteratively update EH scheduling and

beamforming vector, respectively. We show that the sub-optimal scheme has a threshold-based structure

for the relays’ power control depending on the source-relay channel conditions. Numerical results show

near-optimal performance of the distributed scheme compared with the centralized optimal scheme.

Index Terms

Relay beamforming, energy harvesting, potential game, monotonic optimization

I. INTRODUCTION

Recently, wireless energy harvesting (EH) provides a low-cost and sustainable way to keep

network connectivity for battery-powered wireless devices, which traditionally require periodic

replacement or recharging of batteries. It allows wireless devices to harvest energy from ambient
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environment (e.g., solar, wind, and radio frequency (RF) signals) to power wireless information

transmissions (e.g., [1] and [2]). Despite low cost, EH has its difficulty to be widely deployed

in wireless communications. Compared with battery or on-grid power supply, EH is intermittent

in nature and the harvested energy is random due to the dynamics of ambient environment.

The randomness in EH imposes additional constraints on wireless users’ energy consumptions

for communications, therefore requires novel architecture design and energy management for

EH systems. Relying on energy storage, a prominent harvest-store-use (HSU) architecture [3]

is proposed to stabilize the energy supply for data transmission over time. A practical finite

energy buffer is studied in [4] where the authors proposed an adaptive power allocation scheme

to maximize network throughput with a time deadline constraint. This work has been extended to

the cases with Gaussian relay channel in [5], non-ideal transmitter model in [6], multiple batteries

in [7], hybrid and time-correlated EH in [8] and [9], respectively. Despite such advances, the

HSU architecture is still difficult to be used for industry. Firstly, it requires complicated and

costly circuit design to assist frequent switching between battery charging and discharging. For

example, the charging of Lithium batteries requires a high pulsating charging current, which

usually relies on an auxiliary battery or a charging circuit [2]. Secondly, the offline optimal

energy management strategies require the non-causal information about energy and data arrivals,

leading to a theoretical investigation on the performance upper bound, e.g., [3]–[5]. Though

some other works focus on online energy management strategies with causal information, they

are sub-optimal to the offline strategies and usually require known statistical information about the

energy arrivals [10]. For example, the authors in [8] designed the online strategy in a stochastic

dynamic program approach, requiring known probability distribution functions of the channel

gain, harvested energy, and the incoming data bits. The authors in [6] assumed that the energy

arrival follows a compound Poisson process with known mean value and the distribution of

harvested energy in each arrival is also known.

Another approach to tackle the randomness in EH relies on cooperation among individual EH

devices. In a distributed wireless network, the EH profiles (e.g., the EH rates) at different devices

are time varying and location dependent. Hence, cooperative communications may provide a

network-level solution to balance the use of harvested energy in different EH devices. To this

end, relaying protocols have been proposed in [11], where a relay can harvest energy from the

transmitter and use the harvested energy to forward the source information to its destination, in
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either a time switching or power splitting protocol. In [12], the authors examined different power

splitting strategies in a multi-access model, where the relay can harvest energy from multiple

transceiver pairs and split the harvested energy for relaying the traffic of different transceiver

pairs. In [13], the harvested energy can transfer bidirectionally between the source and the relay

in order to maximize the sum throughput. When there are multiple EH relays, optimal relay

selection has been studied in [14] and [15], and an asymptotic network performance has been

analyzed in [16] with an increasing number of EH relays.

However, most of the existing works either study a single relay model (e.g., [11]–[13]), or

selecting single relay from a set of candidates (e.g., [14]–[16]). In fact, the amount of harvested

energy at single node is typically small and insufficient to sustain wireless transmissions [17].

Hence, a single relay may not ensure desired quality of service at the receiver. To this end, we

are interested in selecting multiple EH relays to enhance the reliability of information reception.

By the relays’ collaborative power control, we can create constructive multipath effect at the

destined receiver and weaken the signal strength at undesired directions, and thus improve data

rate at the receiver far away from the source transmitter. However, due to different channel

conditions from the relays to the receiver, it may not be optimal for all the relays to transmit

with the highest power (e.g., [18], [19]). Intuitively, a better performance can be obtained by

decreasing the transmit power of some relays with bad channel conditions.

Moreover, we consider a novel easy-to-implement harvest-use (HU) architecture without costly

energy storage system like rechargeable batteries and complicated energy management at the

relays. Instead, the HU architecture relies on super-capacitors to store the harvested energy [1].

Compared with the rechargeable batteries, the super-capacitors have much larger recharge cycles

(i.e., theoretically infinite and more than one million practically), high charge and discharge

efficiency at small energy levels, which make super-capacitors suitable for EH from low RF

signals. In another aspect, the super-capacitors have lower energy/power density and higher

self-discharge rate, which means that the stored energy is leaking out at a faster rate than the

rechargeable batteries. These characteristics make the HU architecture suitable for deployment

in a wireless sensor network where nodes keep silent most of the time and exchange bursty

short messages randomly. Within this scenario, the EH devices have the motivation to deplete

all their energy to maximize the instant data rate, otherwise the remaining energy will be leaking

out during the inter-transmission periods. A similar HU architecture has been proposed in [20]
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where single EH relay is employed to enhance the overall throughput in a two-hop network, by

always transmitting with its peak power.

In this work, we consider multiple EH relays collaboratively forwarding the source signal in a

half-duplex mode. We aim to determine the relays’ optimal strategy to maximize the throughput

in each transmission period. Note that a better relay in terms of channel condition may not

harvest sufficient energy, so the relays’ transmission control has to take account of both the

relays’ channel conditions and EH profiles. Specifically, our main contributions are summarized

as follows:

1) The HU architecture for EH relay system: We consider a novel HU architecture to power

cooperative communications, where multiple relays can harvest energy from RF signals

and forward the source signal to enhance the throughput at the receiver. Due to the

relays’ inability to harvest and transmit simultaneously, we optimally schedule the data

transmissions according to the relays’ EH profiles and the channel conditions in both the

source-relay and relay-destination channels.

2) Optimal EH scheduling and relay beamforming: We allow each relay to choose a distinct

power amplifier coefficient and formulate the throughput maximization as a non-convex

optimization problem with joint EH scheduling at the source and beamforming at the

relays. By exploiting monotonicity of the problem, we propose a centralized algorithm

that achieves the global optimum through successive approximation.

3) Distributed source-relay update scheme: We also propose a sub-optimal scheme that dis-

tributes the computing task to both the source and the relays. The source firstly chooses

and informs the relays an EH scheduling decision, then individual relays distributively

update their beamforming vector in a potential game with guaranteed convergence to Nash

equilibrium, which in return guides the source to update EH scheduling decision. This

source-relay update process is shown to achieve near-optimal performance.

4) Interplay between relays’ EH and channel conditions: When the relays have good channel

conditions, the relays’ EH profile becomes the bottleneck and dominates the throughput

performance. In this case, at least one relay should transmit at peak power to fully make

use of the harvested energy. When the channel conditions are not desirable, it is preferable

to reduce the number of relays or their transmit power to suppress the noise at the receiver.

Therefore, the optimization of the relays’ transmit power needs to balance between both
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aspects, achieving the optimal throughput performance.

The rest of this paper is organized as follows. In Section II, we introduce the system model

and problem formulation. We present a centralized successive approximation in Section III that

achieves the global optimum, and propose a sub-optimal scheme in a distributed way in Section

IV. We show numerical results in Section V and draw the conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a relay network including one source, one destined receiver, and N relays in

between denoted by a set N = {1, 2, . . . , N}. Each relay is amounted with single antenna

which can be used for transmission and reception in a half-duplex manner. This model can be

envisioned as a wireless sensor network deployed in manufactory or buildings where the sensors

in different locations monitor malfunctionings or structural faults. The sensors are required to

feed back sensing results to a fusion center. To keep a low energy consumption, the sensors

operate in an event-driven manner [21], i.e., they stay in a sleep mode most of the time and

return to active data transmission when something unusual is detected. In this case, the inter-

transmission time can be very long and unpredictable by the sensors.

Due to a large number of sensors and the complex monitoring environment (e.g., some sensors

may be embedded inside the machines or buildings), these sensors are designed to sustain

themselves by harvesting energy from ambient environment, e.g., the mechanical, thermal, solar

energy, or RF signals. Among all these EH techniques, harvesting energy from RF signals has

less restrictions on the hardware implementation and is easy to control, i.e., a dedicated RF

source can be deployed to transfer power to all sensors simultaneously if ambient RF signals

are not strong enough to power up the sensors’ data transmissions. Noting that the sensors’

inter-transmission time can be long, the stored energy in super-capacitors will be depleting due

to the super-capacitors’ high self-discharge rate.

A direct link between a sensor and the fusion center may be weak due to a long transmission

distance or limited transmit power at the sensor. Therefore, a sensor requires the neighboring

sensors to relay its data to the fusion center. An example of 3 relays is illustrated in Fig. 1. Let

hn and gn denote the channel coefficients from the source to relay n and from relay n to the

destination, respectively, for any n ∈ N . Besides, hn and gn are prior information and can be

obtained through channel estimation at the relays and the destination, respectively.
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Fig. 1: Two hop relay model.

A. Source’s EH Scheduling

We assume that each node is capable of harvesting energy from the RF signal, which relies on

the same antenna used for signal reception. The harvested energy is stored in a super-capacitor,

rather than traditional rechargeable battery. However, the current receiver design does not allow

direct EH from the information carrier (e.g., [20], [22]), introducing the confliction between

EH and information transmission. This confliction can be avoided by a time splitting scheme

[22]. Specifically, we organize the data transmissions from the source to the destination in a

time-slotted model as shown in Fig. 2. Each time slot is of a unit length within a frame structure

and allocated to one relay-assisted data transmission. We assume that all wireless links exhibit

frequency non-selective block fading [23], i.e., the channel coefficients remain constant during

one frame, and may change independently from one frame to another.

The first part of a time slot w ∈ [0, 1] is used to charge the relays’ super-capacitors by EH from

RF signals, while the other part of the time slot 1−w is used for the relays’ signal receptions and

forwarding. Thus, the optimal splitting of a time slot requires a trade-off study between EH and

data transmission. We assume the same EH time w for all relays as it is more energy-efficient,

otherwise some relay has to wait until the completion of other relays’ EH, leading to a waste of

harvested energy due to the super-capacitor’s high self-discharge rate. The high self-discharge

rate also causes energy loss during the EH time w, and hence the equivalent EH rate cn is the
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Fig. 2: Time slotted structure.

actual harvesting rate minus the self-discharge rate. Note that cn depends on the energy density

or spectrum environment at specific location. It is assumed as a known constant at the beginning

of each time slot. This assumption is reasonable as the strength of ambient RF signals changes

in a much larger time scale than the time slot for data transmissions (e.g., [7], [24]). In the

remaining part of a time slot, the source first broadcasts a data packet to all the relays, then each

relay forwards the data to the destination concurrently. The channel time can also be optimally

scheduled for the relays to receive and forward the source signal as studied in [25] and [26].

In this paper, for ease of synchronization, we equally divide the channel time into two intervals

with equal length t = 1−w
2
∈ [0, 1/2], similar to the works in [11] and [12].

B. Relays’ Power Control

Given the EH time w, the total harvested energy at relay n is given by En = cnw and the

peak transmit power1 is given as follows:

pn =
cnw

(1− w)/2
=

cn
t/(1− 2t)

. (1)

When the source sends a message s with transmit power p0, the received message mn at relay n

is mn =
√
p0hns+ σn, where σn is the additive noise at relay n and follows a standard normal

distribution with zero mean and unit variance, i.e., σn ∼N (0, 1). Note that p0 is also related to

the energy harvesting time w and can be chosen optimally in each time slot. However, different

choice of p0 will not affect our problem formulation and the analytical results in this paper. For

simplicity, we assume it constant in our problem formulation.

1Note that energy consumption in data reception is much smaller than that in data transmission [27]. Thus, we assume it as

a constant that offsets the harvested energy in the relay’s super-capacitor.
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Assuming E
[
|s|2
]

= 1, the average received signal strength at relay n is 1 + p0h
2
n. Then,

relay n forwards the received signal as well as the noise to the destination by using a power

amplifier coefficient xn
√

pn
1+p0h2n

, where xn ∈ [0, 1] is a normalized power amplifier coefficient

such that the relay’s transmit power is given as x2npn. Hence, we define x = [x1, x2, . . . , xN ]T as

the relays’ transmit beamforming vector. Through proper transmitter synchronization and phase

alignment (e.g., [18], [19]), the amplified signals are combined at the destined receiver as

y =
N∑
n=1

xn

√
pnp0

1 + p0h2n
hngns+

N∑
n=1

xn

√
pn

1 + p0h2n
gnσn + vd,

where vd ∼N (0, 1) is the noise in reception. The first term contains the useful information from

the source, while the second term is the amplified noise forwarded by the relays. Depending

on EH time w and power control parameter xn at each relay n ∈ N , the signal-to-noise ratio

(SNR) at the destined receiver can be found as

γ = p0

(
N∑
n=1

xngnhn
√
pn√

1 + p0h2n

)2/(
1 +

N∑
n=1

x2ng
2
npn

1 + p0h2n

)
. (2)

C. Problem Formulation for Throughput Maximization

Given the relays’ channel information and EH rates, our objective is to maximize the through-

put in the current time slot, i.e., r(t,x) = t log (1 + γ(t,x)), by jointly choosing the EH time w

(or the transmission time t = 1−w
2
< 1

2
) and the relays’ beamforming vector x. The optimization

of the transmit power p0 at the source node can be performed in a one-dimensional search.

Specifically, the source node can firstly fix p0 and find the optimal EH time w by solving

the problem maxt,x r(t,x). Given this EH time w and the EH rate c0 at the source node, it

can anticipate the amount of energy (i.e., c0w) available for data transmission during the time

interval (1 − w)/2. If the harvested energy is enough to support the data transmission, i.e.,

c0w > p0(1−w)/2, the source node can further increase the transmit power otherwise decrease

it in a bisection method. Due to the simplicity of this bisection method, we did not consider the

optimization of p0 in this work. Instead, we focus on the optimization problem maxt,x r(t,x) in

each iteration with a fixed transmit power p0 at the source node. Without loss of generality, we

normalize p0 = 1 in the problem formulation and define two constants to assist our discussions



9

as follows:

a =

[
g1h1
√
c1√

1 + h21
,
g2h2
√
c2√

1 + h22
, . . . ,

gNhN
√
cN√

1 + h2N

]T
, (3a)

b = diag

([
g1
√
c1√

1 + h21
,
g2
√
c2√

1 + h22
, . . . ,

gN
√
cN√

1 + h2N

])
, (3b)

where diag(·) denotes a diagonal matrix with diagonal element specified by a given row vector.

Let A = aaT and B = bbT , by substituting the peak power (1) into (2), the SNR at the

destination node is now given by

γ(t,x) =
xTAx

f(t) + xTBx
, (4)

where f(t) = t/(1 − 2t) = t/w represents the equivalent background noise level, which varies

with different choices of EH time w. Note that, the objective r(t,x) defines a complicated non-

concave function of t and x, and is difficult to achieve its maximum in general. However, by

change of variable, we easily find that r(t, γ) = t log(1 + γ) is an increasing function of t and

γ, which is an appealing property for the design of a global optimal algorithm in next section.

The monotonicity of r(t, γ) with respect to t and γ allows us to simplify the throughput

maximization problem as follows:

max
t,γ
{r(t, γ) : (t, γ) ∈ Ω}, (5)

where Ω defines the feasible set of (t, γ):

Ω =
{

(t, γ)
∣∣∣ 0 ≤ γ ≤ xTAx

f(t)+xTBx
,∀ t ∈ [0, 1

2
),x ∈ [0,1]

}
. (6)

The monotonicity of the objective in (5) implies that the global optimum will be achieved on

the boundary of its feasible set Ω. To locate the optimal solution (t∗, γ∗), we investigate the

following property of Ω that motivates the development of the monotonic optimization method.

Definition 1: A set Ω is normal if z′ ∈ Ω for all 0 � 2z′ � z and z ∈ Ω. A point z ∈ Ω is

an upper boundary point if z′ /∈ Ω for any z′ � z and z′ 6= z. The set of upper boundary point

of Ω is denoted by Ω.

Lemma 1: The feasible set Ω defined in (6) is normal and the optimum of (5) is achieved on

its upper boundary set Ω.

The proof of Lemma 1 is given in Appendix A.

2Here z′ � z means that z − z′ has non-negative entries.
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Fig. 3: Polyblock approximation.

III. CENTRALIZED EH SCHEDULING AND POWER CONTROL

The basic idea of monotonic optimization [28] is to successively approximate the feasible set

Ω by generating regularly shaped normal sets (i.e., polyblocks Pk) such that P0 ⊃ P1 ⊃ · · · ⊃
Pk ⊃ · · · ⊃ Ω, starting from an initial polyblock P0. Note that set Ω can be viewed as the

union of infinitely many boxes in the form of [0,v] where v is the vertex of a box set. The

construction of polyblock Pk is to approximate Ω by a finite set of boxes as illustrated in Fig. 3.

In the k-th iteration, the algorithm firstly determines an upper bound rUk of the global optimum,

i.e., rUk = maxz=(t,γ)∈Pk
r(z), which will be achieved on one of the vertices of Pk due to the

monotonicity of the objective function r(·). Then it updates a lower bound rLk by evaluating the

objective function at one feasible point ok on the upper boundary Ω. The algorithm ends until

the upper and lower bounds converge to the same level within an acceptable error distance ε.

A. Update of Upper and Lower Throughput Bounds

Let Vk denote the vertex set of polyblock Pk, the upper bound rUk can be easily assessed on

the vertices v ∈ Vk according to the monotonicity of r(t, γ). Let zk = arg maxv∈Vk r(v), then

rUk = r(zk) is an upper bound of the optimum r∗. To determine the lower bound rLk , we project

zk onto the upper boundary Ω as illustrated in Fig. 3. The projection point ok is the intersection

between the upper boundary Ω and a straight line from zk to the origin 0. Then we can evaluate
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the lower bound as rLk = r(ok). Note that ok is a scaled version of zk. Let ok = skzk and the

scaling factor sk is obtained by

sk = max
s
{s | szk ∈ Ω}. (7)

That is, we need to find the maximum scaling factor sk such that ok(sk) , skzk belongs to set

Ω. Since Ω is a normal set, it is easy to verify that ok(s) /∈ Ω for any sk < s ≤ 1 and ok(s) ∈ Ω

for any 0 ≤ s ≤ sk, which suggests a bisection method to pinpoint the value of sk. In each

iteration of the bisection method, checking ok(s) ∈ Ω with fixed scaling factor s is equivalent

to find a solution x ∈ [0,1] such that sγk ≤ xTAx
f(stk)+xTBx

, that is, sγkf(stk) ≤ xT (A− sγkB)x.

To check the feasibility of this inequality, we need to solve the following problem

p(s, zk) , max
x
{xT (A− sγkB)x : 0 � x � 1}, (8)

and compare the optimum p(s, zk) with the target threshold sγkf(stk). If p(s, zk) ≥ sγkf(stk),

we have ok(s) ∈ Ω and s will be increased in next iteration.

The availability of p(s, zk) is essential for finding accurate scaling factor sk in (7) and ensuring

the convergence of the polyblock approximation algorithm. However, maximization of such a

quadratic objective in (8) is not straightforward as the matrix coefficient (A − sγkB) may be

indefinite. This makes the maximization problem NP-hard and the feasibility check ambiguous.

Fortunately, the polynomial optimization [29] allows us to relax problem (8) to a semi-definite

program (SDP). Through successive SDP relaxations, we can achieve the global optimum p(s, zk)

within a few steps. Besides, a well designed branch-and-bound numerical algorithm is presented

in [30] that can solve such non-convex problems efficiently.

B. Generation of New Polyblock

If zk = arg maxv∈Vk r(v) in the k-th iteration happens to be on the upper boundary Ω (i.e.,

zk coincides with its projection ok ∈ Ω with sk = 1), then rUk = rLk and zk is the global

optimal solution, otherwise we will update the vertex set Vk+1 and generate a “smaller” polyblock

Pk+1 ⊂ Pk to update either a tighter upper or lower bound of r∗. Now assuming zk /∈ Ω as

shown in Fig. 3, since Ω is a normal set, we have Ω
⋂
P c
k = ∅ where P c

k , {z ∈ Pk | z � ok}
denotes, for an instance, the red hexagon in Fig. 3. Hence, the removal of this part P c

k from

polyblock Pk will give a tighter upper bound of r∗.
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Moreover, the removal of P c
k will generate new vertices and help erase some redundant vertices

in Vk. We have V k(ok) = {v ∈ Vk | v � ok} to denote the redundant vertices, e.g., V k(ok) =

{vk2 = zk,v
k
3} in Fig. 3. To determine the newly generated vertices, we first define the reflection

of ok as z̄k such that z̄k(i) = maxv∈V k(ok)
v(i) for 1 ≤ i ≤ dim(ok)

3, where v(i) and z̄k(i)

denote the i-th entries in v and z̄k, respectively. That is, the i-th entry of z̄k will take the largest

value on the i-th dimension of all vertices v ∈ V k(ok). Given this construction of z̄k, we can

create a number of dim(ok) new vertices each given by vk+1
j = ok + Λj(z̄k − ok). The square

matrix Λj has a unique non-zero element equal to 1 on the j-th diagonal entry, and thus the

multiplication Λj(z̄k − ok) only keeps the j-th element of vector z̄k − ok. The new vertex set

Vk+1 will include all newly generated vertices vk+1
j and exclude all redundant vertices in set V k.

With a little abuse of notation, it is updated as follows:

Vk+1 = Vk − V k + {vk+1
j }0≤j≤dim(ok). (9)

Once we update Vk+1, we can construct new polyblock Pk+1 as the union of finite boxes.

The detailed steps of successive polyblock approximation are shown in Algorithm 1, where ε

is an error tolerance ensuring an ε-optimal solution z∗ = (t∗, γ∗) when the algorithm terminates.

The vertex of the initial polyblock P0 can be set to (1/2, γmax) where γmax denotes the largest

possible SNR for any t ∈ [0, 1/2] and x ∈ [0,1]. Note that γ < xTAx
xTBx

and the maximum of
xTAx
xTBx

is confined by the largest eigenvalue of matrix B−1A [30], therefore we can set γmax =

λmax(B
−1A), which only relates to the relays’ channel conditions and EH rates. Given the

convergent point z∗ = (t∗, γ∗) in Algorithm 1 and the feasibility region of x ∈ [0,1], the

optimal beamforming vector x∗ can be obtained by solving the quadratic equation γ∗f(t∗) =

(x∗)T (A− γ∗B)x∗ in a numerical method (e.g., Newton’s method). Moreover, the optimum of

problem (8) equals to γ∗f(t∗) at the convergence of Algorithm 1, otherwise we will update the

projection in step 8 of Algorithm 1. Therefore, the optimal x∗ can also be obtained by solving

the projection problem (8) with sγk replaced by γ∗. By calling the same solution method for

problem (8) in step 8, we do not need to design additional procedures to solve the equation

γ∗f(t∗) = (x∗)T (A− γ∗B)x∗, and thus reduce the computational complexity of Algorithm 1.

Proposition 1: Algorithm 1 is guaranteed to converge to ε-optimal solution in a finite number

of iterations for any ε > 0.

3dim(ok) denotes the dimension of ok and here we have dim(ok) = 2.
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Algorithm 1 Successive Polyblock Approximation

1: set initial vertex set Vk = {(1/2, γmax)}, polyblock Pk, rUk = 1, and rLk = 0 for k = 0

2: while |rUk − rLk | ≥ ε

3: k ← k + 1

4: update zk = arg maxv∈Vk−1
r(v) and rUk = r(zk)

5: if zk ∈ Ω then

6: update rLk = r(zk)

7: else

8: find projection ok = skzk ∈ Ω

9: update rLk = r(ok) if r(ok) ≥ rLk

10: update vertex set Vk by (9)

11: end if

12: end while

13: set z∗ = zk and r∗ = r(z∗)

14: obtain t∗ from z∗ and x∗ by solving problem (8)

This result can be proved similarly as in Proposition 3.9 of [28], by showing the Lipschitz

continuity of the objective function r(t, γ). We provide the details in Appendix B.

Fig. 4 gives an illustrative example of Algorithm 1. For a fixed transmission time t, we solve the

projection problem (8) and obtain the maximum SNR γ. All these numerically calculated points

(t, γ) form the upper boundary Ω, which is denoted by the dashed line in Fig. 4(a). Observing

the shape of curve Ω, the feasible region Ω is non-convex but normal. When the generation of

polyblocks, denoted by solid lines in Fig. 4(a), becomes closer to the global optimum, denoted by

marker “*”, the gap between rUk and rLk is diminishing to a desired accuracy ε = 10−5 as shown

in Fig. 4(b). The implementation of the successive polyblock approximation method requires a

centralized collection and processing of all information about the channel conditions and EH

rates at individual relays. Each relay can estimate EH rate cn and the channel coefficient hn, and

then report them to the receiver. Combined with the channel coefficient gn, the destined receiver

can perform successive polyblock approximation, and feed back the optimal EH scheduling

parameter t∗ to the source and the optimal beamforming vector x∗ to the relays, respectively.
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Fig. 4: An illustrative example.

IV. DISTRIBUTED EH SCHEDULING AND POWER CONTROL

The successive polyblock approximation method allocates main computational task to a single

device (e.g., the destined receiver), and requires global information about the relays’ channel

conditions and EH rates. Though it gives a systematical way to assess the optimal throughput

performance, we prefer to distribute the whole decision making process to individual devices

and each device makes a local decision independently. In this section, we propose a distributed

algorithm that requires the interactions between the source and the relays. The idea is to let the

source decide the EH scheduling parameter t and the relays locally optimize the beamforming

vector x, respectively.

A. An Iterative Sub-optimal Method

1) Source updates EH scheduling decision: The following property of the optimal transmis-

sion time t helps us design the decision making strategies for the source and the relays.

Lemma 2: The SNR γ(t,x) is decreasing and the throughput r(t,x) is concave with respect

to the transmission time t. Hence, the optimal t∗ in (5) is achieved interior to its feasible set

[0, 1/2) and can be found by solving the first-order optimality condition ∂r(t,x)/∂t = 0.
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The result is derived by checking the derivative of γ and r with respect to t, respectively.

Detailed proof is given in Appendix C. Intuitively, when the source increases EH time w, the

relays will harvest more energy and consume it in a shorter transmission time t = 1−w
2

, resulting

in a higher SNR at the destination for a fixed beamforming vector x. However, the overall

throughput may not be necessarily increased since the transmission time t is reduced. Lemma 2

gives the optimality condition for EH scheduling and implies a gradient-based method to search

for a local optimal transmission time t∗.

2) Relays update beamforming vector: Given the EH scheduling decision t, the relays then

optimize x∗(t) achieving the highest SNR at the destined receiver, i.e.,

x∗(t) = arg max
0�x�1

xTAx

f(t) + xTBx
. (10)

Let γ(t,x∗(t)) denote the maximum achievable SNR for a fixed t and we define ρ , γ(t,x) =

xTAx
f(t)+xTBx

≤ γ(t,x∗(t)), which is a ratio between two convex functions. Thus, problem (10)

is non-concave and existing convex optimization techniques (e.g., [31]) do not apply in this

case. To address this difficulty, we reshape problem (10) into a subtractive form S(x, ρ) =

xTAx− ρ
(
f(t) + xTBx

)
. From Dinkelback’s Theorem in [31], we have the following result.

Lemma 3: For any fixed ρ, let xs(ρ) denote the solution to

S̄(ρ) = max
x
{ S(x, ρ) : 0 � x � 1 } . (11)

If there exists ρ∗ ≥ 0 such that S̄(ρ∗) = 0, then xs(ρ
∗) is the optimal solution to (10) and we

have ρ∗ = γ(t,xs(ρ
∗)) = γ(t,x∗(t)).

From Lemma 3, we require to solve S̄(ρ∗) = 0 where ρ∗ corresponds to the maximum SNR

at the destined receiver. We may consider the Newton iteration to search for the solution ρ∗, i.e.,

we check the value of S̄(ρ) for some ρ and then update ρ if S̄(ρ) 6= 0. The Newton iteration

requires the calculation of derivative of S̄(ρ) with respect to ρ, which is not easy as S̄(ρ) is the

optimum of problem (11). The following property helps simplify the solution process.

Lemma 4: S̄(ρ) is strictly decreasing with respect to ρ and there is unique solution to S̄(ρ) = 0.

This property can be verified by showing that S̄(ρ1) = S(xs(ρ1), ρ1) > S(xs(ρ2), ρ1) >

S(xs(ρ2), ρ2) = S̄(ρ2) for any ρ2 > ρ1 > 0. Details can be found in [31]. The monotonicity

of S̄(ρ) motivates a bisection method to guide the search for ρ∗. In each step, we maximize a

non-convex quadratic objective (11), which has the same structure as in (8). Therefore, the SDP

relaxation developed in [29] can be well applied to find S̄(ρ) with any fixed ρ.
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Algorithm 2 Iterative Update of EH Scheduling at Source and Beamforming Vector at Relays

1: initialize tk, xk, and ρ ∈ [ρmin, ρmax]

2: while |∂r(t,x)/∂x
∣∣
(tk,xk)

|+ |∂r(t,x)/∂t
∣∣
(tk,xk)

∣∣ ≥ ε

3: while |S̄(ρ)| ≥ ε and |ρmax − ρmin| ≥ ε

4: evaluate S̄(ρ) in a game-theoretic approach

5: if S̄(ρ) ≥ 0, update ρmin = ρ, end if

6: if S̄(ρ) ≤ 0, update ρmax = ρ, end if

7: update xk = xs(ρ) and ρ = ρmin+ρmax

2

8: end while

9: set ∆t ←
∣∣∂r(t,x)/∂t

∣∣
(tk,xk)

∣∣
10: update tk ← tk + αk∆t

11: end while

12: return convergent (tk,xk)

3) Convergence of source-relay iterations: We summarize the solution method in Algorithm

2, in which the source starts the iteration by choosing an EH scheduling parameter tk, then in

lines 3− 8 of the algorithm, the relays determine the beamforming vector xs(ρ∗) in a bisection

method that maximizes the SNR at the destined receiver for fixed tk. The update of tk in lines

9− 10 follows a gradient direction where αk is a proper step-size. Then the algorithm continues

to check whether overall throughput can be further improved in line 2 and notifies the relays to

update a beamforming vector if the stopping criterion does not hold.

Proposition 2: The iterative Algorithm 2 is guaranteed to converge to a local optimum.

The proof is straightforward as Algorithm 2 mimics a hill climbing algorithm. In each outer

iteration, it updates either beamforming vector x∗(t) (in lines 3− 8) or EH scheduling decision

t (in lines 9− 10). The process continues to improve the objective r(t,x∗(t)) in every iteration

until there is no further improvement. Though the objective is a concave function of t, it does not

mean that it is jointly concave in variable (t,x). Thus, there may exist several local optimums

and Algorithm 2 just guarantees convergence to a local optimum.
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B. Relays’ Power Control in a Game-Theoretic Approach

Given the global information about the relays’ EH rates and channel conditions, the successive

SDP relaxation [29] provides an efficient way to optimize the relays’ beamforming vector

x(tk). To further resolve the computational complexity of an SDP problem, we propose a fully

distributed subroutine to perform the task in line 4 of Algorithm 2. The subroutine maximizes

S(x, ρ) through an equal participation of individual relays, instead of solving (11) directly in a

centralized manner. To proceed, we expand4 S(x, ρ) =
∑N

n=1 x
2
n(a2n− ρb2n) +

∑
m 6=n anamxnxm

where an =
gnhn

√
cn√

1+h2n
and bn =

gn
√
cn√

1+h2n
. Note that an = bnhn, we have

S(x, ρ) =
N∑
n=1

a2nxn

((
1− ρ

h2n

)
xn +

N∑
m=1,m 6=n

am
an
xm

)
. (12)

At this point, we consider decomposing the maximization of S(x, ρ) into N local problems at

individual relays. Each relay n ∈ N optimizes its own power amplifier coefficient xn, given the

other relays’ decision strategies.

1) A potential game modeling: Considering a game-theoretic framework to design the dis-

tributed algorithm, we start with three key elements of the game: players, strategies, and payoffs,

denoted in a triplet G = (N , {Xn}n, {un}n). The set of relays N can be viewed as the players in

game G and the strategy of relay n is to choose a power control parameter xn from its strategy

space Xn = [0, 1], given the other relays’ decision vector x−n , [x1, . . . , xn−1, xn+1, . . . , xN ]T .

All relays’ decisions constitute the strategy profile x = [x1, x2, . . . , xN ]T . A proper design of the

relay’s payoff function un(xn,x−n) will ensure the convergence to Nash equilibrium, in which

no relay can further increase its payoff by unilaterally deviating to any other strategies.

One possibility to ensure the existence of Nash equilibrium is to devise a global potential

function for the relays’ payoff un(xn,x−n), enforcing G to be a potential game [32] in which

any change of a relay’s payoff function will be reflected by the change of the potential function.

Therefore, we can set the potential function exactly as S(x, ρ) and maximize it when the game G
achieves Nash equilibrium. Moreover, we have an exact potential game (EPG) if any change of

a relay’s payoff equals the change of the potential function, i.e., S(xn,x−n, ρ)−S(x̄n,x−n, ρ) =

un(xn,x−n)− un(x̄n,x−n), where relay n changes its strategy from xn to x̄n and other relays’

strategies x−n are unaltered. Given this relationship, we have the following result:

4Note that S(x, ρ) = xT (A−ρB)x−ρf(t). We only consider the first term xT (A−ρB)x as the other term ρf(t) is fixed.
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Proposition 3: Define the payoff of relay n as follows:

un(xn,x−n) = a2nxn

((
1− ρ

h2n

)
xn + 2

N∑
m=1,m 6=n

am
an
xm

)
, (13)

then G is an EPG with the potential function S(x, ρ) given in (12), and the existence of Nash

equilibrium is guaranteed.

The proof is given in Appendix D. The local objective un(xn,x−n) is quadratic in the local

decision variable xn. The optimal strategy can be calculated efficiently at individual relays and

we summarize the solution as follows.

Proposition 4: Let x∗n(x−n) denote the best response strategy of relay n that maximizes its

objective un(xn,x−n) given the other relays’ strategy profile x−n, then

x∗n(x−n) =


1, ρ ≤ h2n

min

(
1,

∑N
m=1,m 6=n amxm

an(ρ/h2n−1)

)
, ρ > h2n

. (14)

The result is derived by maximizing the payoff function in (13). When ρ ≤ h2n, the payoff

un(xn,x−n) is an increasing function of xn, thus xn = 1 is optimal. When ρ ≥ h2n, it is concave

on [0, 1]. By taking the derivative of un(xn,x−n) with respect to xn and setting it to zero, we

obtain the optimal solution x∗n(x−n) in (14).

2) Convergence to Nash equilibrium: In potential game G, Nash equilibrium can be achieved

in an iterative manner by individual relays’ sequential updates of their best response strategies

[32]. Let X = (x0,x1, · · · ) be a sequence of strategy profiles generated by the relays’ best

response updates. Then, the sequence X constitutes an improvement path in which every two

consecutive strategy profiles differ in one coordinate, e.g., xk and xk+1 differ in relay nk’s

strategy and unk
(xknk

,xk−nk
) < unk

(xk+1
nk

,xk−nk
). Note from [32] that, any improvement path is

finite for a potential game with discrete strategy space and finite potential function. However,

for the game G with a compact strategy space Xn, the improvement path may be long as the

relays’ strategy updates may contribute little to improve the potential function. In practice, we

have two ways to handle this. Firstly, we can discretize the strategy space Xn into finite power

control levels and then follow a finite improvement path to achieve Nash equilibrium. Secondly,

we impose the best response updates with an ε-stopping condition, which prevents the relays

from updating strategies unless they have at least ε payoff improvement.
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3) Properties of the relays’ beamforming vector: The best response strategy in (14) shows that

we have a threshold-based policy to choose the relays, depending on the source-relay channel

coefficient hn. A relay n with a good channel gain (i.e., h2n > ρ) is chosen to transmit with peak

power (i.e., xn = 1), while the other relays with relatively bad channel gain only partially use

their harvested energy. An intuitive explanation for this result is that, each relay has two ways to

affect the transmission. It not only forwards useful signal but the noise as well. When channel

condition is not good and a great noise is received in the source-relay hop, the relay should

reduce its transmit power to suppress the noise at the destination. The value of power control

parameter xn is not only decided by EH rates and channel conditions in the source-relay hop,

but also influenced by the channel conditions in the relay-destination hop. Moreover, the relays’

power control parameters are coupled with each other and cannot be obtained in a closed-form.

To shed some light on the implication of Proposition 4, we consider a simple case with two

relays and analyze its Nash equilibrium.

Proposition 5: In game G with 2 relays and let h21 ≥ h22, we have the following statements:

1) If ρ ≤ h2n for n ∈ {1, 2}, then x = (1, 1) is the unique Nash equilibrium.

2) If ρ > h2n for n ∈ {1, 2}, then we have a unique Nash equilibrium at x = (0, 0) when

ρ > h21 + h22, and at x = (1, 1) when ρ < h21 + h22.

3) If h21 ≥ ρ > h22, we have a unique Nash equilibrium at x = (1, β2a1) when ρ ≥(
1 + a1

a2

)
h22, and at (1, 1) when ρ <

(
1 + a1

a2

)
h22, where βn = h2n

an(ρ−h2n)
.

The results in Proposition 5 can be easily extended to the case with more relays. Detailed

analysis is given in Appendix E. From Proposition 5, we have two interesting observations:

• When both relays have bad source-relay channels, i.e., ρ > h21 + h22, they will not forward

data packets to the destination, i.e., x1 = x2 = 0. This case can happen when the relays are

far away from the source.

• When the source-relay channels are good, i.e., ρ < h21 + h22, there will be at least one relay

transmitting at its peak power. For example in case 3) of Proposition 5, the relay 1 with

better channel (e.g., h21 ≥ ρ > h22) decides x1 = 1 no matter ρ ≥
(

1 + a1
a2

)
h22 or not.

By this simple case with two relays, we can analyze how the power control parameters xn change

with respect to the relay-destination channel gain gn. Considering case 3) in Proposition 5 where
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Nash equilibrium (1, β2a1) is achieved when h21 ≥ ρ >
(

1 + a1
a2

)
h22. Then we have,

x2 = β2a1 =
a1h

2
2

a2(ρ− h22)
=

g1h1h2
√
c1(1 + h22)

g2(ρ− h22)
√
c2(1 + h21)

,

which becomes larger/smaller when the relay-destination channel is getting worse/better. This

result seems counter-intuition, but we can show that x2 actually maximizes the difference between

the strength of useful signal (i.e., xTAx) and the weighted noise power ρ(f(t) + xTBx). By

the construction of the potential function in (12), we have S((1, x2), ρ) = −
(
a2
a1

)2 (
ρ−h22
h22

)
x22 +

2
(
a2
a1

)
x2 +

h21−ρ
h21

. Take the derivative of S((1, x2), ρ) with respect to x2 and set it to zero, the

optimum of S((1, x2), ρ) is achieved when x2 = β2a1.

The computational complexity of Algorithm 1 mainly lies in the projection problem in line 8,

which can be reformulated in an SDP problem. An SDP can be readily solved by an interior-point

method and the analysis of its computational complexity can be found in [33]. The computational

complexity of Algorithm 2 mainly lies in the evaluation of S̄(ρ) inside the bisection method.

When the evaluation of S̄(ρ) is fully distributed in the potential game G, the complexity in each

iteration of Algorithm 2 will be significantly reduced as each relay only requires to maximize

a local objective in (13), with the solution readily given in (14). Finally, we observe that the

relays requires information exchange between each other, i.e., each relay n requires x−n and all

channel information am to perform best response update as in (14), and the source also needs

global information to update EH scheduling decision t as in lines 9-10 of Algorithm 2.

V. SIMULATION RESULTS

In this section, we evaluate the proposed centralized and distributed algorithms through numer-

ical experiments. We consider 3 relays located between a source and the destined receiver in two

typical relay structures, namely, the isomorphic and heteromorphic structures as shown in Fig.

5. In isomorphic structure, relays are positioned similarly away from the source, while they are

positioned very differently in the heteromorphic structure. Let lA→B denote the distance between

transceivers A and B. The mean path loss is given by 1/leA→B with the propagation exponent e

set to 3.5. The channel gains are also subject to log-normal distributed random variables with

zero mean and standard derivation 5dB [34]. In the simulation, we set lS→R2 = lR2→D = 20m

and lR1→R2 = lR2→R3 = 5m in the isomorphic structure and the heteromorphic structure is a
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Fig. 5: Isomorphic (left) and heteromorphic (right) relay structures.

rotation of the isomorphic structure with the pivot at relay 2. The shortest source-relay distance

in the heteromorphic structure is denoted by lHS→R1
.

A. Comparison with Existing Relay Schemes

Firstly, we consider the isomorphic structure and compare throughput performance of the

proposed centralized (optimal) and the distributed (sub-optimal) methods in Fig. 6. The global op-

timum, denoted by solid straight line in Fig. 6(a), is the performance upper bound achieved by the

successive polyblock approximation in Algorithm 1. The distributed source-relay update method

in Algorithm 2 decomposes the task of optimizing beamforming vector to N local sub-problems

at individual relays. Initially, we set the relays’ beamforming vector as x = [0.5, 0.5, 0.5] and

EH scheduling decision as t = 0.25. We observe that Algorithm 2 iteratively converges to

the global optimum as shown in Fig. 6(a). In the general case, we randomly generate relays’

locations within a 15× 15m2 square area between the source and destination nodes. We record

the throughput performance for 100 independent simulation runs and plot in Fig. 6(b) the relative

performance difference between Algorithm 2 and its global optimum. All simulation results show

that the distributed algorithm is almost as good as the centralized algorithm with no more than

0.2% performance loss. We also evaluate Algorithm 2 with an increasing number of relays and

randomly generated initial values for x ∈ [0,1] and t ∈ (0, 1
2
). The comparison of the throughput

performance between Algorithms 1 and 2 is shown in Table I. Row 2 of Table I shows the global

optimal throughput r1 obtained by Algorithm 1, which becomes larger with more collaborative

relays. It also shows that the throughput performance of Algorithm 1 has very small difference

with respect to the throughput r2 obtained by Algorithm 2. Their relative differences are given

in row 3 of Table I and generally less than 1% for different number of relays.

In Fig. 7, we compare the throughput performance of Algorithm 2 (denoted as Alg. 2 in

Fig. 7) with some existing relay schemes, i.e., the max-min and greedy relay selection schemes
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Fig. 6: Comparison of optimal and sup-optimal methods.

TABLE I: Comparison of optimal and sub-optimal methods

Number of Relays N = 4 N = 5 N = 6 N = 7 N = 8

Thoughput r1 0.87 1.03 1.14 1.20 1.33
r1−r2

r1
× 100% 0.57% 0.51% 0.68% 0.69% 0.41%

in [15] as well as the optimal beamforming obtained in [18]. The max-min relay selection

scheme first determines the worst link of the source-relay and relay-destination channels at

each relay, i.e., `n = min{|hn|2, |gn|2}, then relay n∗ with the strongest worst link is se-

lected, i.e., n∗ = max{`1, `2, . . . , `N}. The greedy relay selection scheme chooses the re-

lay n∗ with the largest product of the source-relay and relay-destination channel gains, i.e.,

n∗ = max{|h1|2|g1|2, |h2|2|g2|2, . . . , |hN |2|gN |2}. The results in Fig. 7(a) show that the proposed

relay scheme in Algorithm 2 achieves significant throughput improvement compared with the

single relay selection schemes. In the case of selecting multiple relays, the optimal beamforming

vector is analytically obtained in [18] with fixed power supply at the relays. To compare it with

our proposed relay scheme in Algorithm 2, we vary the EH time w that results in different power

constraints at the relays, i.e., pn ≤ cnw
(1−w)/2 . For each fixed EH time w and rate c ∈ {1, 2, 3},

we apply the beamforming strategy in [18] and record the optimal throughput as shown by the

curves in Fig. 7(b). The straight lines in Fig. 7(b) correspond to the optimal throughput achieved
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Fig. 7: Comparison with relay selection and beamforming schemes.

by Algorithm 2 with different EH time c. We observe that Algorithm 2 can obtain the maximum

throughput by choosing the optimal EH time w∗ as indicated in Fig. 7(b).

B. Relay Selection Driven by Source-Relay Link

Now we check how the throughput performance changes when all relays move away from the

source in isomorphic structure. In this case, the source-relay channel hn for each relay n is getting

worse, while the relay-destination channel gn is getting better. In Fig. 8(a), we plot the change

of throughput with the same EH rate for all relays set to c = 1, c = 3, and c = 5, respectively.

We observe from Fig. 8(a) that, a larger EH rate is always preferable as it increases the overall

throughput, but the throughput improvement varies at different locations5. Specifically, when

the relays move closer to the source (lS→R ≤ 20), relays’ EH profiles become the throughput

bottleneck, thus the increase of EH rates will improve the throughput significantly. On the other

hand, when the relays are far from source (lS→R ≥ 20), the throughput can hardly change with

respect to the increase of EH rates since the source-relay channels now become the performance

5We define the relay’s location in terms of its distance to the source node (e.g., lS→R).
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Fig. 8: Optimal relay locations shifts with varying EH rate c.

bottleneck. Therefore, the choice of relays should well balance the EH and channel profiles at

individual relays.

Fig. 8(a) also shows that the maximum throughput is achieved when the relays are relatively

close to the source. When the relays’ EH rates increase, the optimal relay location is shifted

toward the source, which implies that the source-relay channel is more important than the relay-

destination channel for relays with energy harvesting constraints. This result is further shown in

Fig. 8(b) where we plot the optimal relay’s locations for different EH and channel conditions.

The EH condition is represented by the EH rate in x-axis of Fig. 8(b) and the channel condition

is denoted by different path loss exponent e in the legend of Fig. 8(b). A similar result can also

be found for heteromorphic structure, while omitted here for conciseness.

C. Optimal Beamforming Vector at Relays

In this part, we study the throughput performance of the heteromorphic relay structure in

Fig. 5 and compare it with the isomorphic structure. Fig. 9 plots their optimal throughput with

different relays’ EH rates. Starting from low EH rate, the isomorphic structure can better utilize

the harvested energy of all relays, and thus contribute a higher throughput. When the EH rate
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c increases, the relays can accumulate more energy and their channel conditions become the

throughput bottleneck. Note that relay 1 in Fig. 5 has the shortest source-relay distance in

heteromorphic structure, it has much better channel condition and thus can contribute to the most

of the overall throughput. Therefore, we see a higher throughput in heteromorphic structure than

that in isomorphic structure when EH rate is high, as shown in the left of Fig. 9. We further

shift relay 1 closer to the source while keeping the same locations of relays 2 and 3, and plot the

change of throughput with different source-relay distances in the right of Fig. 9. We observe that,

the optimal throughput can be improved by properly shifting relay 1 to the source when EH rate

is high, and shifting it away from source when EH rate is low. However, the overall throughput

may drop significantly if relay 1 is too closer to the source, e.g., the case with lS→R1 = 5. This

is because, the throughput bottleneck is shifted from the source-relay to the relay-destination

channel, i.e., though the source-relay channel is good and EH rate is high, relay 1 no longer

contributes much to the overall throughput as the relay-destination channel deteriorates severely.

Fig. 10 shows the the relays’ optimal beamforming vector x∗ in the heteromorphic structure

with different source-relay distances lS→R1 . As relay 1 always transmits with its peak power

(x1 = 1), we only show the power amplifier coefficients of the relays 2 and 3 in Fig. 10.

We observe that, the relays’ beamforming vector varies significantly according to the relays’
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Fig. 10: Optimal power control decisions with different EH rates.

locations (or channel conditions), e.g., the small value of x∗3 shows that relay 3 is barely selected

for transmission in either case due to its bad source-relay channel condition. We also find that, the

relays’ EH rate can significantly affect the power control decisions. When EH rate is low, relay 1

requires the help from the other relays to jointly improve the overall throughput. However, when

EH rate is high, relay 1’s contribution dominates the throughput performance, and the relays

2 and 3 are opting out of the relay network as shown in Fig. 10 where the power amplifier

coefficients of relays 2 and 3 are decreasing very fast with the increase of EH rate.

VI. CONCLUSIONS

In this paper, we employ multiple relays powered by energy harvesting to forward data packets

from a source to its destination. We study the interplay between EH and data transmission by

formulating a throughput maximization problem that jointly optimizes EH scheduling and the

relays’ transmit power, by considering the variations of the relays’ channel conditions and EH

rates. We first propose a centralized scheme that achieves the global throughput by exploiting the

monotonicity in the problem structure. We also propose a distributed sub-optimal scheme in a

game theoretic approach that achieves near-optimal throughput performance. Simulation reveals

some interesting results that may guide the choice and deployment of relays with EH constraints
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in practice. Multi-hop relay network with EH constraints is one of our future research focuses.

Variations in EH rates and channel conditions at different nodes further complicate the selection

of relays and the routes for information forwarding. The accurate estimation of EH rates is also

a challenging task and an active research area of our interest.

APPENDIX

A. Proof of Lemma 1

By the definition of normal set, we will show that, for any z(1) = (t(1), γ(1)) � z(2) =

(t(2), γ(2)) � 0, we have z(2) ∈ Ω if z(1) ∈ Ω. That is, we can find a solution x(2) ∈ [0,1] such

that γ(2) ≤ γ̄(t(2),x(2)) , (x(2))TAx(2)

f(t(2))+(x(2))TBx(2) , given that γ(1) ≤ γ̄(t(1),x(1)). Note that we have

f(t(2)) = 1
1/t(2)−2 ≤

1
1/t(1)−2 = f(t(1)) if t(2) ≤ t(1). Thus, γ̄(t,x) is an decreasing function of t

and we can always choose the same x(2) = x(1) such that γ̄(t(2),x(2)) ≥ γ̄(t(1),x(1)) ≥ γ(1) ≥
γ(2), which implies that Ω is normal set.

If the optimum z∗ = (t∗, γ∗) is not achieved on the upper boundary Ω, we can always find

some z′ = (t′, γ′) ∈ Ω and z′ � z∗. Since r(t, γ) is strictly increasing in both t and γ, we have

r(t′, γ′) > r(t′, γ∗) > r(t∗, γ∗), which contradicts with the assumption.

B. Proof of Proposition 1

Lipschitz continuity requires that ||r(z2)− r(z1)|| ≤M ||z2 − z1||, ∀z2, z1 ∈ Ω, where M is

a constant. Let z = z1 + θ(z2 − z1) and g(θ) = r(z), thus g(0) = r(z1) and g(1) = r(z2). By

the fundamental theorem of calculus, we have ∆r , r(z2)− r(z1) = g(1)− g(0) =
∫
θ
g′(θ) dθ

and g′(θ) = ∂r(z)
∂z

(z2 − z1), therefore we have

||∆r|| ≤
∣∣∣∣∣∣∣∣∫

θ

∂r(z)

∂z
dθ

∣∣∣∣∣∣∣∣ · ||∆z|| ≤ max

∣∣∣∣∣∣∣∣∂r(z)

∂z

∣∣∣∣∣∣∣∣ · ||∆z||.

Note that ∂r(z)
∂z

=
[
log(1 + γ1 + θ(γ2 − γ1)), t1+θ(t2−t1)

1+γ1+θ(γ2−γ1)

]T
, we can always set M = ||[log(1 +

γmax), 1/2]|| such that ||r(z2) − r(z1)|| ≤ M ||z2 − z1||, which shows that r(t, γ) is Lipschitz

continuous on Ω. Therefore, by Proposition 3.9 in [28], it is guaranteed to converge to ε-optimal

solution within finite iterations.
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C. Proof of Lemma 2

Firstly, note that limt→0 r(t,x) = 0 and limt→1/2 r(t,x) = 0. Thus, the optimal transmission

time t is interior of [0, 1/2] as we can easily find a t ∈ (0, 1/2) such that r(t,x) > 0. Concavity

can be verified by checking the second derivative of r(t,x) with respect to t as follows

∂r

∂t
= log(1 + γ) +

t

1 + γ

∂γ

∂t
, and (15a)

∂2r

∂t2
=

2

1 + γ

∂γ

∂t
− t

(1 + γ)2

(
∂γ

∂t

)2

+
t

1 + γ

∂2γ

∂t2
. (15b)

Besides, we have 0 ≥ ∂γ
∂t

= − γ
(f(t)+xTBx)(1−2t)2 ≥ −

γ
t(1−2t) and ∂2γ

∂t2
= ∂γ

∂t

(
2
γ
∂γ
∂t

+ 4
1−2t

)
,

Substituting them into (15b), we get ∂2r
∂t2

= 1
1+γ

∂γ
∂t

(
2

1−2t + t(2+γ)
γ(1+γ)

∂γ
∂t

)
≤ γ∂γ/∂t

(1+γ)2(1−2t) ≤ 0, which

verifies that the objective in (5) is strictly concave on t ∈ (0, 1/2). For any fixed beamforming

vector x, the best choice of t is always achieved at ∂r(t,x)/∂t = 0.

D. Proof of Proposition 3

Suppose that the relay n unilaterally changes its power control parameter from xn to x̄n, and

then the strategy profile changes from (xn,x−n) to (x̄n,x−n), we will check how the potential

function S(x, ρ) changes with the new strategy profile. We tear S(x, ρ) into two parts, one

relates to x̄n and the other only relates to x−n as follows:

S(xn,x−n, ρ)

= a2nxn

((
1− ρ

h2n

)
xn +

N∑
m=1,m 6=n

am
an
xm +

N∑
k=1,k 6=n

ak
an
xk

)

+
N∑

k=1,k 6=n

a2kxk

((
1− ρ

h2k

)
xk +

N∑
m=1,m 6=k,n

am
ak
xm

)

= a2nxn

((
1− ρ

h2n

)
xn + 2

N∑
m=1,m 6=n

am
an
xm

)

+
N∑

k=1,k 6=n

a2kxk

((
1− ρ

h2k

)
xk +

N∑
m=1,m 6=k,n

am
ak
xm

)

= un +
N∑

k=1,k 6=n

a2kxk

((
1− ρ

h2k

)
xk +

N∑
m=1,m 6=k,n

am
ak
xm

)
.
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Therefore, we have S(xn,x−n, ρ)− S(x̄n,x−n, ρ) = un(xn,x−n)− un(x̄n,x−n), which implies

that G is an EPG with potential function S(x, ρ). Since S(x, ρ) is finite, relays’ strategy updates

will finally achieve a stable point at which S(x, ρ) cannot be improved any more, which

corresponds to Nash equilibrium of the game G.

E. Proof of Proposition 5

It is obvious that an all-ones vector 1 is the unique Nash equilibrium when all relays have

good channel conditions. If all relays have bad channel conditions, the Nash equilibrium is

a solution to a set of linear equations (i.e., xn = βna
T
−nx−n) projected on [0,1], where a−n

is given in (3a) by removing the n-th element an. Therefore, either 0 or 1 would be unique

Nash equilibrium depending on the coefficients βna−n. In the third case, at least one relay has

good channel condition and owns the maximum power control parameter, say xn = 1. Other

relays’ power control parameters are given by the intersections between hyperplanes xn = 1 and

xm = βma
T
−mx−m for m 6= n, also projected on [0,1].

For example, in a two-user case, relays’ best response strategies can be represented by straight

lines in a two dimensional space, e.g., x2 = β2a
T
−2x−2 = β2a1x1. The location of Nash

equilibrium can be easily discussed according to the line slopes, which are given as β2a1 and

β1a2, respectively according to (14). When β2a1 = 1
β1a2

, two best response curves collide with

each other and any point on the curve becomes a Nash equilibrium. When β2a1 <
1

β1a2
, which

is equivalent to ρ > h21 + h22, the best response iteration will converge to the unique fix point

at (0, 0), otherwise converge to (1, 1) when ρ < h21 + h22. When h21 ≥ ρ > h22, we simply have

x1 = 1 and x2 = (1,min(β2a1, 1)).
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