Naresh D. Sanandiya, Christoph Ottenheim, Jun Wei Phua, Augusta Caligiani, Stylianos Dritsas, Javier G. Fernandez
Scientific Reports. 2020, 10(1): 4632
Publication year: 2020


Bioinspired manufacturing, in the sense of replicating the way nature fabricates, may hold great potential for supporting a socioeconomic transformation towards a sustainable society. Use of unmodified ubiquitous biological components suggests for a fundamentally sustainable manufacturing paradigm where materials are produced, transformed into products and degraded in closed regional systems with limited requirements for transport. However, adoption is currently limited by the fact that despite their ubiquitous nature, these biopolymers are predominantly harvested as industrial and agricultural products. In this study, we overcome this limitation by developing a link between bioinspired manufacturing and urban waste bioconversion. This result is paramount for the development of circular economic models, effectively connecting the organic by-products of civilization to locally decentralized, general-purpose manufacturing.erein, we present the synthesis of surface-oxidized cellulose nanofiber (CNF) hydrogel and characterization with various physicochemical analyses and spectroscopic tools as well as its suitability for cellular encapsulation and delivery. The structure-property relationship as shear thinning, thixotropy, creep-recovery and stimuli responsiveness are explored. The CNF hydrogel is capable to inject possessing shear thinning

Leave a Reply

Your email address will not be published. Required fields are marked *

This website uses cookies to ensure you get the best experience on our website more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.