List

All humans start out from a single cell which then divides to eventually form the embryo. Depending on the signals sent by their adjacent cells, these divided cells are then developed or differentiated into specific tissues or organs.

In regenerative medicine, controlling that differentiation in the lab is crucial as stem cells could be differentiated to allow for the growing of organs in vitro and replace damaged adult cells, particularly those with very limited abilities to replicate, such as the brain or heart.

One common approach scientists adopt when differentiating stem cells is by using chemical stimulators. While this method is very efficient to make one single type of cells, it lacks the ability to reproduce the complexity of living organisms, where several cell types coexist and collaborate to form an organ.

Alternatively, inspired by the natural process of cell development, another method involves the packing of stem cells into small cellular aggregates, or spheres called embryoid bodies. Similar to real embryos, the cell-cell interaction in embryoid bodies is the main driver of differentiation. From the production of these embryoid bodies, it was found that parameters such as cell numbers, size, and sphericity of the embryoid body influenced the types of cells that are produced. 

However, since scientists have not been able to control those parameters, they have had to laboriously produce large numbers of embryoid bodies and select specific ones with suitable characteristics to be studied. 

To address this challenge, we turned to additive manufacturing to control stem cell differentiation in embryoid bodies. Their research study was published in Bioprinting.

Adopting a multidisciplinary approach by combining the research domains of 3D manufacturing and life sciences, Rupambika 3D printed several micro-scaled physical devices with finely tuned geometries. She used the devices to demonstrate unprecedented precision in the directed differentiation of stem cells through the formation of embryoid bodies (refer to image). In their study, they successfully regulated the parameters for enhancing the production of cardiomyocytes, cells which are found in the heart.

As the field of additive manufacturing is evolving at an unrivaled pace. We are seeing levels of precision, speed and cost that were inconceivable just a few years ago. What we have demonstrated is that 3D printing has now reached the point of geometrical accuracy where it is able to control the outcome of stem cell differentiation. And in doing so, we are propelling regenerative medicine to further advance alongside the accelerated rate of the additive manufacturing industry.

Until now, the use of 3D printing in biology has been strongly focused on the printing of artificial tissues using cell laden cells, to build artificial organs ‘piece by piece’. Now, we have demonstrated that 3D printing has the potential for it to be used in a bio-inspired approach in which we can control cells to grow in a lab just as they grow in vivo.

Reference:
Additive manufacturing enables production of de novo cardiomyocytes by controlling embryoid body aggregation, Bioprinting. (DOI: 10.1016/j.bprint.2020.e00091)

Leave a Reply

Your email address will not be published. Required fields are marked *

  Posts

August 15th, 2020

Exploring the targeted differentiation of stem cells through 3D printed geometrical cues

All humans start out from a single cell which then divides to eventually form the embryo. Depending on the signals […]

July 18th, 2020

Mimicking the mineralized shells of cockles

In the summer, many people enjoy walks along the beach looking for seashells. Among the most prized are those that […]

March 18th, 2020

We developed the link between urban waste and additive manufacturing: Bioinspired engineering was the missing piece for regional circular economies

Urban waste and bioinspired engineering provide key ingredients to 3D printed materials, allowing for global adoption of sustainable manufacturing processes. […]

April 2nd, 2019

Nano-cellulose for the encapsulation and delivery of cells

Tissue engineering is a medical solution that uses living cells to repair or replace structural tissue, such as blood vessels, […]

November 16th, 2018

The largest biological structure ever printed

Since its invention plastic has become central in our economy and way of life. If in the 1950’s we produced […]

September 8th, 2016

Our patent on Shrilk has been granted

The United States Patent and Trademark Office (USPTO) has issued a patent on our application for Shrilk. The patent “High […]

November 5th, 2015

Making Chitosan objects: A school activity

“Education is the most powerful weapon which you can use to change the world.” —Nelson Mandela (1918-2013)   Chitin is […]

March 25th, 2015

Serendipity in Science: looking for chitin and finding plastic

The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka” but “That’s funny…” […]

January 15th, 2015

Guide To The 3-D Printed Universe

Megan Molteni, from Popular Science, has produced a graphical review of the present and upcoming 3D technologies. She include our […]

This website uses cookies to ensure you get the best experience on our website more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close