Research

Many Body Hamiltonian Quantum Systems

Many Body Open Quantum Systems

Methods


Quantum Thermodynamics

Quantum Ratchets


We are mainly interested in the Dynamics and Thermodynamics of Many-Body Quantum Systems. With this we aim to further the development of the next generation of quantum technologies, from quantum emulators to energy harvesters.
We typically investigate experimental set-ups such as ultracold atoms in optical lattices, and ultracold ions.


Many-Body Hamiltonian Quantum Systems

Hamiltonian

We are very interested in dynamical and groundstate properties of Many-Body Quantum Systems. We recently focus in particular on Hamiltonian effectively generated by time-periodic potentials and on Hamiltonians with density dependent tunneling and gauge fields. This is the list of our papers in the field:

  1. S. Greschner, D. Huerga, G. Sun, D. Poletti, L. Santos “Density-dependent synthetic magnetism for ultra-cold atoms in optical lattices”, Physical Review B 92, 115120 (2015), (arxiv:1502.07944)
  2. S. Greschner, D. Poletti, L. Santos, “Density-dependent synthetic gauge fields using periodically modulated interactions”, Physical Review Letters 113, 215303 (2014), (arxiv:1311.3150)
  3. S. Greschner, L. Santos, D. Poletti, “Exploring unconventional Hubbard models with doubly modulated lattice gases”, Physical Review Letters 113, 183002 (2014), (arxiv:1407.6196)
  4. T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Bissbort, T. Esslinger, “Artificial graphene with tunable interactions”, Physical Review Letters 111, 185307 (2013), (arxiv:1308.4401)
  5. J.S. Bernier, D. Poletti, P. Barmettler, G. Roux, C. Kollath. “Slow quench dynamics of Mott-insulating regions in a trapped Bose gas”, Physical Review A 85, 033641 (2012), (arxiv:1111.4214)
  6. P. Barmettler, D. Poletti, M. Cheneau, C. Kollath, “Propagation front of correlations in an interacting Bose gas”, Physical Review A 85, 053625 (2012), (arxiv:1202.5558)
  7. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr “Light-cone like spreading of correlations in a quantum many-body system”, Nature481, 484 (2012), (arxiv:1111.0776)
  8. D. Poletti, C. Kollath, “Slow quench dynamics of periodically driven quantum gases”, Physical Review A 84, 013615 (2011), (arxiv:1105.0686)
  9. D. Poletti, C. Miniatura, B. Grémaud, “Topological quantum phase transition of attractive spinless fermions in a honeycomb lattice”, EuroPhysics Letters 93, 37008 (2011), (arxiv:1006.3179)

Open Many-Body Quantum Systems

OpenManyBody

Future quantum devices will lean on the possibilities offered by Many-Body Quantum Systems while interacting also with an external environment. This is why we study the fundaments and the application of Open Many-Body Quantum Systems. This is the list of our papers in the field:

  1. C. Guo, M. Mukherjee, D. Poletti, “Tuning energy transport using interacting vibrational modes”, Physical Review A 92, 023637 (2015), (arxiv:1505.05942)
  2. B. Sciolla, D. Poletti, C. Kollath, “Two-time correlations probing the dynamics of dissipative many-body quantum systems: Aging and fast relaxation” accepted in Physical Review Letters (2015), (arxiv:1407.4939)
  3. J.-S. Bernier, D. Poletti, C. Kollath, “Dissipative dynamics of fermions in optical lattices: a slave spin approach”, accepted by Physical Review B (2014), (arxiv:1407.1098)
  4. D. Poletti, P. Barmettler, A. Georges, C. Kollath, “Emergence of glass-like dynamics for dissipative and strongly interacting bosons”, Physical Review Letters 111, 195301 (2013), (arxiv:1212.4637)
  5. J.-S. Bernier, P. Barmettler, D. Poletti, C. Kollath, “Emergence of long-distance pair coherence through incoherent local environmental coupling”, Physical Review A 87, 063608 (2013), (arxiv:1211.4087)
  6. D. Poletti, J.-S. Bernier, A. Georges, C. Kollath, “Interaction-induced impeding of decoherence and anomalous diffusion”, Physical Review Letters 109, 045302 (2012), (arxiv:1203.4540)

Quantum Thermodynamics

Thermodynamics

 

Energy devices working at nano and sub-nano scales will be ruled by Quantum Thermodynamics. We investigate thermodynamic processes and engine cycles. This is the list of our papers in the field:

  1. Y. Zheng, S. Campbell, G. De Chiara, D. Poletti “Cost of transitionless driving and work output”, (2015), (arxiv:1509.01882)
  2. Y. Zheng, D. Poletti, “Quantum statistics and the performance of engine cycles”, Physical Review E 92, 012110 (2015), (arxiv:1504.02183)
  3. Y. Zheng, D. Poletti, “Work and efficiency of quantum Otto cycles in power-law trapping potentials”, Physical Review E 90, 012145 (2014), (arxiv:1404.3832)

Methods

Methods

We use and develop a variety of different analytical and numerical methods. One of our main tools is the time-dependent Matrix Product States algorithm. Our papers in which we used this method are:

  1. C. Guo, M. Mukherjee, D. Poletti, “Tuning energy transport using interacting vibrational modes”, Physical Review A 92, 023637 (2015), (arxiv:1505.05942)
  2. S. Greschner, D. Huerga, G. Sun, D. Poletti, L. Santos “Density-dependent synthetic magnetism for ultra-cold atoms in optical lattices”, Physical Review B 92, 115120 (2015), (arxiv:1502.07944)
  3. S. Greschner, D. Poletti, L. Santos, “Density-dependent synthetic gauge fields using periodically modulated interactions”, Physical Review Letters 113, 215303 (2014), (arxiv:1311.3150)
  4. S. Greschner, L. Santos, D. Poletti, “Exploring unconventional Hubbard models with doubly modulated lattice gases”, Physical Review Letters 113, 183002 (2014), (arxiv:1407.6196)
  5. J.-S. Bernier, P. Barmettler, D. Poletti, C. Kollath, “Emergence of long-distance pair coherence through incoherent local environmental coupling”, Physical Review A 87, 063608 (2013), (arxiv:1211.4087)
  6. J.S. Bernier, D. Poletti, P. Barmettler, G. Roux, C. Kollath. “Slow quench dynamics of Mott-insulating regions in a trapped Bose gas”, Physical Review A 85, 033641 (2012), (arxiv:1111.4214)
  7. P. Barmettler, D. Poletti, M. Cheneau, C. Kollath, “Propagation front of correlations in an interacting Bose gas”, Physical Review A 85, 053625 (2012), (arxiv:1202.5558)
  8. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr “Light-cone like spreading of correlations in a quantum many-body system”, Nature481, 484 (2012), (arxiv:1111.0776)
  9. D. Poletti, C. Kollath, “Slow quench dynamics of periodically driven quantum gases”, Physical Review A 84, 013615 (2011), (arxiv:1105.0686)

Quantum Ratchets

Ratchet
A ratchet is a system with broken time and space inversion symmetries in which these asymmetries are used to control its motion without any external net force. Our papers in this topic are:

  1. G. Benenti, G. Casati, S. Denisov, S. Flach, P. Hänggi, B. Li and D. Poletti, “Comment on ‘Coherent Ratchets in Driven Bose-Einstein Condensates’”, Physical Review Letters 104, 228901 (2010), (arxiv:0912.3667)
  2. J. Abdullaev, D. Poletti, E.A. Ostrovskaya, B. Li and Y.S. Kivshar, “Controlled transport of matter waves in two-dimensional optical lattices”, Physical Review Letters 105, 090401 (2010), (arxiv:1003.0748)
  3. D. Poletti, G. Benenti, G. Casati, P. Hänggi and B. Li, “Steering Bose-Einstein condensates despite time symmetry”, Physical Review Letters 102, 130604 (2009), (arxiv:0811.3340)
  4. D. Poletti, E.A. Ostrovskaya, T.J. Alexander, B. Li and Y.S. Kivshar, “Ratchet-induced matter-wave transport and soliton collisions in Bose-Einstein condensates”, Physica D 238, 1338 (2009)
  5. D. Poletti, T.J. Alexander, E.A. Ostrovskaya, B. Li and Y.S. Kivshar, “Dynamics of Matter-Wave Solitons in a Ratchet Potential”, Physical Review Letters 101, 150403 (2008), (arxiv:0802.0085)
  6. D. Poletti, G. Benenti, G. Casati and B. Li, “Interaction-induced quantum ratchet in a Bose-Einstein condensate”, Physical Review A 76, 023421 (2007), (arxiv:cond-nat/0609535)
  7. G. Casati, D. Poletti, “Quantum ratchets for periodically kicked cold atoms and Bose-Einstein condensates”, Journal of Physics: Conference Series 67, U5 (2007)
  8. J. Gong, D. Poletti and P. Hänggi, “Dissipationless Directed Transport in Rocked Single-Band Quantum Dynamics”, Physical Review A 75, 033602 (2007), (arxiv:cond-mat/0702668)
  9. D. Poletti, G. G. Carlo and B. Li, “Current behavior of a quantum Hamiltonian ratchet in resonance”, Physical Review E 75, 011102 (2007), (arxiv:cond-mat/0606124)
  10. D. Poletti, L. Fu, J. Liu, and B. Li, “Quantum resonance and anti-resonance for a periodically kicked Bose-Einstein condensate in a one-dimensional box”, Physical Review E 73, 056203 (2006), (arxiv:cond-mat/0603362)

 Machine Learning

We used quantum inspired algorithms to do machine learning. We have thus developed an algorithm based on Matrix Product States for sequence-to-sequence learning. Our algorithm can be find at https://github.com/chu604/pymps

  1. C. Guo, Z. Jie, W. Lu, and D. Poletti, “Matrix product operators for sequence-to-sequence learning”, Physical Review E 98, 042114 (2018), (arxiv.org/abs/1803.10908)

Comments are closed.