Two-dimensional space-charge-limited flows in a crossed-field gap

W. S. Koh and L. K. Ang

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
and Institute of High Performance Computing, Singapore 117528, Singapore

(Received 6 December 2006; accepted 6 March 2007; published online 6 April 2007)

This letter presents a two-dimensional (2D) model of space-charge-limited current in a planar crossed-field gap with a magnetic strength of $B/B_H=0$–3, where B_H is the Hull cutoff magnetic field. The electrons are emitted from an infinite length strip of finite width W comparable to the gap spacing D. It is found that the 2D enhancement of the crossed-field limiting current is $1+F\times 4D/(\pi W)$, where $F=(0.05$–$0.5)$ is a normalized mean-position factor, and it is a function of B/B_H. Good agreement has been obtained in comparisons with particle-in-cell simulation.

For high current electron beam transport across an anode-cathode (AK) vacuum gap, the space charge effects of the electrons will limit the amount of current propagation. In the one-dimensional (1D) nonrelativistic case, the maximum steady-state current density that can be transported across a planar gap is given by the classical Child-Langmuir (CL) law,

$$J_{CL} = \frac{4e_0}{9\pi}\frac{V_{e}^{3/2}}{m_e D^2},$$

where D is the gap spacing, V_e is the gap voltage, e_0 is the free space permittivity, and e and m_e are the charge and mass of the electron, respectively. Recently, the 1D classical CL law has been extended to multidimensional classical models,2–4 a two-dimensional (2D) weakly relativistic model,4 and quasi-2D quantum model.5,6 Similar 2D models have also been formulated for the short-CL law7 and the cylindrical configuration.4

For a 1D crossed-field gap with a magnetic field B parallel to the electrode surface, limiting current density (due to space charge effects) has been formulated for $B=0$–B_H and $B=B_H$, where $B_H=2m_eV_e/eD^2$ is the Hull cutoff magnetic field that prevents electrons (without space charge effects) from reaching the anode.10 The classical 1D model was also extended to a quantum model for a nanosized crossed-field gap.11 For the $B=B_H$ case, it was found that transition from laminar flow to turbulent flow may occur due to over injection of current with a value higher than the limiting current value,12 small ac voltage modulation,12 resistivity,13 and misalignment of the magnetic field.14

The microwave magnetron is a type of crossed-field device that is widely used in microwave ovens, radars, industrial heating, medical accelerators, and plasma sources. Recently, low noise and fast mode locking for the microwave magnetron have been developed using various techniques such as magnetic priming,5 cathode priming,16 multiple cathodes of narrow width,17 and transparent cathode.18 For the methods using small-sized cathode,17,18 the size of the cathode can be comparable to the spacing between the AK gap for which the 1D models9,10 determine that the limiting current are no longer valid. A cooling method of using electron field-thermal emission in a crossed-field gap has already been proposed, which applies a sharp emitter with a size much smaller than the gap spacing.19

Thus, it is of interest to study the effects of finite emission area on the space-charge-limited (SCL) electron flows in a crossed-field gap. For simplicity, we will consider a simple planar gap with electron emission from an infinitely long strip with a width comparable to the gap spacing.

Consider a 1D planar gap of spacing D with a grounded cathode and an anode potential of V_e. Electrons with zero emission energy ($u_0=0$) are injected normally into the gap from the cathode at $x=0$ to the anode at $x=D$. The electron emission is restricted in an infinitely long strip (along the z direction) with a finite width of W from $y=-W/2$ to $y=W/2$. The transverse magnetic field (either B_x or B_z) is applied parallel to the electrode surfaces. By using the previous methods,3,4,10 the enhancement of the 2D SCL current density in terms of the 1D SCL current density can be expressed as

$$J_{s2}(2D)/J_{s1}(1D) = 1 + F\times G,$$

where

$$J_{s2}(2D) = \frac{4F}{\pi W D}.$$

Here, $F=\int_0^D \int_0^D n(x)dx/\int_0^D n(x)dx$ is the normalized mean-position factor of the 1D SCL flow at various B/B_H (see below) and $G=4D/(\pi W)$ is the geometrical factor independent of B/B_H. Note that the equation is only valid for $W/D \geq 1$.

In the formulation of F as a function of B/B_H, we follow the conventions used in the previous papers,20 with the following normalized variables: $\Omega=eB/m$ is the normalized magnetic field strength, $\tilde{z}=x/D$ is the normalized position in the gap, $\tau=\Omega t$ is the normalized transit time, $\tilde{u}=u/\Omega D$ is the normalized velocity, $\tilde{V}=eV/m\Omega^2 D$ is the normalized potential in the gap, $\tilde{c}=c/\Omega D$ is the normalized initial acceleration, $\tilde{E}=E/m\Omega^2 D$ is the normalized electric field, and $\tilde{J}=J/\varepsilon_0 \Omega^2 D$ is the normalized current density. By changing the variable to $\tau=\int dx/u$, the normalized mean-position correction factor F can be expressed as

a)Electronic mail: kohws@ihpc.a-star.edu.sg
b)Author to whom correspondence should be addressed; electronic mail: elkang@ntu.edu.sg
also plotted for comparison. From the figure, we see that the zero magnetic field, which gives 141503-2 W. S. Koh and L. K. Ang Appl. Phys. Lett.
methodology of solving them can be found elsewhere,8,9 and will not be elaborated here. At
as compared to
Here,
FIG. 1. (Color online) (a)Mean-position correction factor F and (b) Normalized 2D current density (in terms of the 1D CL law) \(\mu_{e} = J_{e}(2D)/J_{e}(1D) \) as a function of \(B/B_{H} \) for \(W=0.8, 1.6 \) and 3 (solid lines: top to bottom). The dashed line denotes the normalized 1D results \(\mu_{e} = J_{e}(1D)/J_{e}(1D) \) obtained from Refs. 8 and 9. Zero initial injection energy is assumed in the analytical model.

\[
F = \frac{1}{T} \int_{0}^{T} \bar{x}(\bar{t})d\bar{t} = \frac{1}{T}[m\bar{J}^{2}/2 + \cos \bar{T} - 1] + \bar{c}[\bar{T} - \sin \bar{T}].
\]

(3)

For \(B/B_{H} < 1 \) case, we have \(\bar{c} = (\sqrt{B/B_{H}})^{2} - 1 - \bar{J} + \bar{J} \cos \bar{T} / \sin \bar{T} \) and \(m=1 \). For \(B/B_{H} > 1 \) case, they are \(\bar{c} = -2\bar{J} \tan(\bar{T}/2) \) and \(m=2 \). Note that the \(m=2 \) is to account for the return injected current back to the cathode when \(B > B_{H} \).

Here, \(\bar{J} \) and \(\bar{T} \) are solved as a function of \(B/B_{H} \) by using the 1D SCL electron flow model in a crossed-field gap. The methodology of solving them can be found elsewhere,8,9 and will not be elaborated here. At \(B=0 \), we recover the limit of zero magnetic field, which gives \(F=0.25\).4,9

Figure 1(a) illustrates the variation of the mean-position factor \(F \) as a function of \(B/B_{H} \). At the transition point of \(B/B_{H} = 1 \), we have \(F=0.5 \). The figure indicates that \(F \) increases with \(B/B_{H} \to 1 \) and decreases with \(B/B_{H} > 1 \). In Fig. 1(b), the 2D crossed-field limiting current density \(J_{e}(2D) \) [normalized with respect to the 1D CL law \(J_{e}(1D) \)] is plotted as a function of \(B/B_{H} \). The 1D results of \(W/D \gg 1 \) (dashed lines) are also plotted for comparison. From the figure, we see that the 2D enhancement of SCL flow at \(B/B_{H} > 1 \) is less important in comparison to \(B/B_{H} < 1 \). The 2D effects become insignificant at large magnetic field due to small Brillouin hub height \(x_{T} \) as compared to gap spacing and the width of the emission strip \(x_{T} < D \approx W \).

Our calculated results have been verified by using a 2D particle-in-cell (PIC) code called XOOPIC20 in the range of \(0 \leq B/B_{H} \leq 3 \). The simulation model in XOOPIC consists of a planar gap of \(x=D=1 \) cm and \(V_{S}=1 \) kV. Electrons are emitted uniformly from a 2D infinite strip of width \(W \) (in y direction) with a small initial energy of 0.01 eV to initiate the emission. For \(B/B_{H} < 1 \), we applied a static transverse magnetic field in the \(z \) direction, \(B=B_{z} \). By using the over injection method, we determine the SCL current by gradually increasing the emission current until a limiting value for which virtual cathode oscillation will occur. The normalized 2D crossed-field SCL current density \(\mu_{e} = J_{e}(2D)/J_{e}(1D) \) is plotted from \(B/B_{H} = 0 \) to 1 (solid lines) for \(W=0.8, 1.6 \), and 3, as shown in Fig. 2(a).

FIG. 2. (Color online) Normalized 2D current density (in terms of the 1D crossed-field CL law) \(\mu_{e} = J_{e}(2D)/J_{e}(1D) \) for \(W=0.8, 1.6 \), and 3 (solid lines) as functions of (a) \(B/B_{H} < 1 \), and (b) \(B/B_{H} > 1 \). The unfilled symbols denote the simulation results obtained from XOOPIC for \(B/B_{H} = 1 \) with \(B = B_{z} \). The filled symbols denote the simulation results obtained from XOOPIC for \(B/B_{H} > 1 \) with \(B = B_{z} \). Initial injection energy of 0.01 eV is used in the simulation.

In conclusion, we have extended the previous 2D classical models of SCL electron flows in a normal AK gap24, to a...
crossed-field gap for both $B < B_H$ and $B > B_H$ cases. Our results indicate that the 2D enhancement of limiting current density is more significant for $B < B_H$ case. Our analytical results showed excellent agreements with XOPIC simulations for a wide range of B/B_H and $W/D \geq 1$. It is worth mentioning that the 2D model developed here is readily to be extended to three-dimensional (3D) models with more complicated emission shapes (such as rectangle and ellipse) by simply changing the G parameter to various formulas that have been derived before [see Eqs. (10) and (11) in Ref. 4]. The verification of such 3D models will require intensive 3D PIC simulation, which is beyond the scope of this letter.

This work was supported by the Agency for Science, Technology and Research of Singapore (Ref. No. 042 101 0080) and USA AFOSR Grant No. AOARD 064050. The authors would also like to acknowledge the efforts put in by L. Sun and X. Hua under the URECA (Undergraduate Research Experience on Campus) program in Nanyang Technological University, Singapore.

10A. W. Hull, Phys. Rev. 18, 31 (1921).