Week 2

Sun Jun
with slides from Hans Petter Langtangen
Suppose we want to make a table of Celsius and Fahrenheit degrees:

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>-4.0</td>
</tr>
<tr>
<td>-15</td>
<td>5.0</td>
</tr>
<tr>
<td>-10</td>
<td>14.0</td>
</tr>
<tr>
<td>-5</td>
<td>23.0</td>
</tr>
<tr>
<td>0</td>
<td>32.0</td>
</tr>
<tr>
<td>5</td>
<td>41.0</td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
</tr>
<tr>
<td>15</td>
<td>59.0</td>
</tr>
<tr>
<td>20</td>
<td>68.0</td>
</tr>
<tr>
<td>25</td>
<td>77.0</td>
</tr>
<tr>
<td>30</td>
<td>86.0</td>
</tr>
<tr>
<td>35</td>
<td>95.0</td>
</tr>
<tr>
<td>40</td>
<td>104.0</td>
</tr>
</tbody>
</table>

How can a program write out such a table?
We know how to make one line in the table:

\[
\begin{align*}
C &= -20 \\
F &= \frac{9.0}{5}C + 32 \\
\text{print } C, \ F
\end{align*}
\]

We can just repeat these statements:

\[
\begin{align*}
C &= -20; \quad F = \frac{9.0}{5}C + 32; \quad \text{print } C, \ F \\
C &= -15; \quad F = \frac{9.0}{5}C + 32; \quad \text{print } C, \ F \\
\ldots \\
C &= 35; \quad F = \frac{9.0}{5}C + 32; \quad \text{print } C, \ F \\
C &= 40; \quad F = \frac{9.0}{5}C + 32; \quad \text{print } C, \ F
\end{align*}
\]

Very boring to write, easy to introduce a misprint

When programming becomes boring, there is usually a construct that automates the writing

The computer is very good at performing repetitive tasks!

For this purpose we use *loops*
A while loop executes repeatedly a set of statements as long as a boolean condition is true

```python
while condition:
    <statement 1>
    <statement 2>
    ...
<first statement after loop>
```

- All statements in the loop must be indented!
- The loop ends when an unindented statement is encountered
The while loop for making a table

print '------------------' # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition
 F = (9.0/5)*C + 32 # 1st statement inside loop
 print C, F # 2nd statement inside loop
 C = C + dC # last statement inside loop
print '------------------' # end of table line
The program flow in a while loop

- \(C = -20 \)
- \(dC = 5 \)

while \(C \leq 40 \):
 \[
 F = \frac{9.0}{5} \times C + 32
 \]
 print \(C \), \(F \)
 \(C = C + dC \)

Let us simulate the while loop by hand

First \(c \) is -20, \(-20 \leq 40\) is true, therefore we execute the loop statements

Compute \(F \), print, and update \(c \) to -15

We jump up to the while line, evaluate \(C \leq 40 \), which is true, hence a new round in the loop

We continue this way until \(c \) is updated to 45

Now the loop condition \(45 \leq 40 \) is false, and the program jumps to the first line after the loop – the loop is over
An expression with value true or false is called a boolean expression

Examples: $C = 40$, $C \neq 40$, $C \geq 40$, $C > 40$, $C < 40$

- $C == 40$ # note the double ==, C=40 is an assignment!
- $C != 40$
- $C >= 40$
- $C > 40$
- $C < 40$

We can test boolean expressions in a Python shell:

```python
>>> C = 41
>>> C != 40
True
>>> C < 40
False
>>> C == 41
True
```
Combining boolean expressions

Several conditions can be combined with and/or:

while condition1 and condition2:
 ...

while condition1 or condition2:
 ...

Rule 1: \texttt{C1 and C2} is True if both \texttt{C1} and \texttt{C2} are True

Rule 2: \texttt{C1 or C2} is True if one of \texttt{C1} or \texttt{C2} is True

Examples:

```python
>>> x = 0; y = 1.2
>>> x >= 0 and y < 1
False
>>> x >= 0 or y < 1
True
>>> x > 0 or y > 1
True
>>> x > 0 or not y > 1
False
>>> -1 < x <= 0  # -1 < x and x <= 0
True
>>> not (x > 0 or y > 0)
False
```
Exercise

• Write a program, with a while-loop, that asks users to input 10 numbers (one each time) output the sum of the numbers so far once a number is entered.

enter a number: 5
sum is: 5

enter a number: 6
sum is 11

...
Sometimes we want to perform different actions depending on a condition.
Consider the function

\[
f(x) = \begin{cases}
\sin x, & 0 \leq x \leq \pi \\
0, & \text{otherwise}
\end{cases}
\]

In a Python implementation of \(f \) we need to test on the value of \(x \) and branch into two computations:

```python
def f(x):
    if 0 <= x <= pi:
        return sin(x)
    else:
        return 0
```

In general (the `else` block can be skipped):

```python
if condition:
    <block of statements, executed if condition is True>
else:
    <block of statements, executed if condition is False>
```
We can test for multiple (here 3) conditions:

```python
if condition1:
    <block of statements>
elif condition2:
    <block of statements>
elif condition3:
    <block of statements>
else:
    <block of statements>
<next statement>
```
Example on multiple branches:

\[N(x) = \begin{cases}
0, & x < 0 \\
x, & 0 \leq x < 1 \\
2 - x, & 1 \leq x < 2 \\
0, & x \geq 2
\end{cases} \]

```python
def N(x):
    if x < 0:
        return 0
    elif 0 <= x < 1:
        return x
    elif 1 <= x < 2:
        return 2 - x
    elif x >= 2:
        return 0
```
A common construction is

```python
if condition:
    variable = value1
else:
    variable = value2
```

This test can be placed on one line as an expression:

```python
variable = (value1 if condition else value2)
```

Example:

```python
def f(x):
    return (sin(x) if 0 <= x <= 2*pi else 0)
```
• If a non-Boolean expression is given as a condition (in if, while, for, etc.), it is evaluated and converted to True/False automatically.
 – ‘’’, None, [], 0 are converted to False
 – “None”, [1,2], 4 are converted to True
Exercise

• Write a program which takes two positive integers and returns their greatest common divisor.
So far, one variable has referred to one number (or string)

Sometimes we naturally have a collection of numbers, say degrees $-20, -15, -10, -5, 0, \ldots, 40$

Simple solution: one variable for each value

$C_1 = -20$
$C_2 = -15$
$C_3 = -10$
\ldots
$C_{13} = 40$

(stupid and boring solution if we have many values)

Better: a set of values can be collected in a list

$C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]$ Now there is one variable, c, holding all the values
A list consists of elements, which are Python objects.

We initialize the list by separating elements with comma and enclosing the collection in square brackets:

\[L_1 = [-91, 'a string', 7.2, 0] \]

Elements are accessed via an index, e.g. \[L_1[3] \] (index=3)

List indices are always numbered as 0, 1, 2, and so forth up to the number of elements minus one.

```python
mylist = [4, 6, -3.5]
print(mylist[0])
4
print(mylist[1])
6
print(mylist[2])
-3.5
len(mylist) # length of list
3
```
Some interactive examples on list operations:

```python
>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30]
>>> C.append(35)  # add new element 35 at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]
>>> C = C + [40, 45]  # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> C.insert(0, -15)  # insert -15 as index 0
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2]  # delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2]  # delete what is now 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C)  # length of list
11
```
More examples in an interactive Python shell:

```python
>>> C.index(10) # index of the first element with value 10
3
>>> 10 in C # is 10 an element in C?
True
>>> C[-1] # the last list element
45
>>> C[-2] # the next last list element
40
>>> texfile, logfile, pdf = somelist
>>> texfile
'book.tex'
>>> logfile
'book.log'
>>> pdf
'book.pdf'
```
List Operations (part 4)

• Given \(x = [0,1,2,3,4,5] \), the following are true:
 \(x[0] == x[-6] == 0 \)
 \(x[5] == x[-1] == 5 \)
 \(x[6] \) and \(x[-7] \) give you error
 \(x[1:3] == [1,2] \)
 \(x[2:] == [2,3,4,5] \)
 \(x[:4] == [0,1,2,3] \)
 \(x[:] == [0,1,2,3,4,5] \)
 \(x + x == [0,1,2,3,4,5,0,1,2,3,4,5] == x*2 \)
Environments

• For any object,
 – type() gives its type
 – id() gives its memory address
 – its value can be obtained by evaluating the object.
 – “==” tests for equivalence of values
 – “is” tests for equivalence of ids

• Immutable objects: numbers, strings, tuples …
• Mutable objects: lists, dictionaries, …
• Learn to draw the environment diagram!
Shallow and Deep Copy

• Sharing = Saving = Out of Control
• Object copy

```python
import copy

# returns a shallow copy of x
copy.copy(x)

# returns a deep copy
copy.deepcopy(x)
```
Week 2: Cohort 2

Sun Jun

with slides from Hans Petter Langtangen
We have used many Python functions

- **Mathematical functions:**

  ```python
  from math import *
  y = sin(x)*log(x)
  ```

- **Other functions:**

  ```python
  n = len(somelist)
  ints = range(5, n, 2)
  ```

- **Functions used with the dot syntax (called methods):**

  ```python
  C = [5, 10, 40, 45]
  i = C.index(10)    # result: i=1
  C.append(50)
  C.insert(2, 20)
  ```

- **What is a function?** So far we have seen that we put some objects in and sometimes get an object (result) out
- **Next topic:** learn to write your own functions
Python functions

- Function = a collection of statements we can execute wherever and whenever we want
- Function can take input objects and produce output objects
- Functions help to organize programs, make them more understandable, shorter, and easier to extend
- Simple example: a mathematical function \(F(C) = \frac{9}{5}C + 32 \)
  ```python
def F(C):
    return (9.0/5)*C + 32
  
Functions start with `def`, then the name of the function, then a list of arguments (here `C`) – the function header
- Inside the function: statements – the function body
- Wherever we want, inside the function, we can ”stop the function” and return as many values/variables we want
A function does not do anything before it is called

Examples on calling the $F(C)$ function:

```python
a = 10
F1 = F(a)

F(C)
```

```python
temp = F(15.5)

print F(a+1)
```

```python
sum_temp = F(10) + F(20)
```

```python
Fdegrees = [F(C) for C in Cdegrees]
```

Since $F(C)$ produces (returns) a float object, we can call $F(C)$ everywhere a float can be used
Exercise

• Problem Set 2-1: Question 1 and 2
For loops

- We can visit each element in a list and process the element with some statements in a *for* loop.

**Example:**

```
degrees = [0, 10, 20, 40, 100]
for C in degrees:
 print 'list element:', C
 print 'The degrees list has', len(degrees), 'elements'
```

- The statement(s) in the loop must be indented!
- We can simulate the loop by hand:
- **First pass:** \( C \) is 0
- **Second pass:** \( C \) is 10 ...and so on...
- **Fifth pass:** \( C \) is 100

- Now the loop is over and the program flow jumps to the first statement with the same indentation as the `for C in degrees` line.
The table of Celsius and Fahrenheit degrees:

Celsius = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

for C in Celsius:
    F = (9.0/5)*C + 32
    print C, F

The print C, F gives ugly output

Use printf syntax to nicely format the two columns:

print '%5d %5.1f' % (C, F)

Output:

-20  -4.0
-15   5.0
-10  14.0
-5   23.0
  0  32.0
  .....
 35  95.0
 40 104.0
The for loop

```python
for element in somelist:
 # process element
```

can always be transformed to a while loop

```python
index = 0
while index < len(somelist):
 element = somelist[index]
 # process element
 index += 1
```

Example: while version of the for loop on the previous slide

```python
Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
index = 0
while index < len(Cdegrees):
 C = Cdegrees[index]
 F = (9.0/5)*C + 32
 print '%5d %5.1f' % (C, F)
 index += 1
```
Let us put all the Fahrenheit values also in a list:

```python
Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
Fdegrees = [] # start with empty list
for C in Cdegrees:
 F = (9.0/5)*C + 32
 Fdegrees.append(F) # add new element to Fdegrees

print F prints the list
[-4.0, 5.0, 14.0, 23.0, 32.0, 41.0, 50.0, 59.0, 68.0, 77.0, 86.0, 95.0, 104.0]
```
For loops usually loop over list values (elements):

```python
for element in somelist:
 # process variable element
```

We can alternatively loop over list indices:

```python
for i in range(0, len(somelist), 1):
 element = somelist[i]
 # process element or somelist[i] directly
```

- `range(start, stop, inc)` generates a list of integers `start`, `start+inc`, `start+2*inc`, and so on up to, but not including, `stop`
- `range(stop)` is the same as `range(0, stop, 1)`

```python
>>> range(3) # = range(0, 3, 1)
[0, 1, 2]
>>> range(2, 8, 3)
[2, 5]
```
Say we want to add 2 to all numbers in a list:

```python
>>> v = [-1, 1, 10]
>>> for e in v:
... e = e + 2
...
... >>> v
[-1, 1, 10] # unaltered!
```

Explanation: inside the loop, `e` is an ordinary (int) variable, first time `e` becomes 1, next time `e` becomes 3, and then 12 – but the list `v` is unaltered.

We have to index a list element to change its value:

```python
>>> v[1] = 4 # assign 4 to 2nd element (index 1) in v
>>> v
[-1, 4, 10]
```

To add 2 to all values we need a for loop over indices:

```python
>>> for i in range(len(v)):
... v[i] = v[i] + 2
...
... >>> v
[1, 6, 12]```
List comprehensions

- Example: compute two lists in a for loop

  ```python
  n = 16
  Cdegrees = []; Fdegrees = []  # empty lists
  for i in range(n):
    Cdegrees.append(-5 + i*0.5)
    Fdegrees.append((9.0/5)*Cdegrees[i] + 32)
  ```

- Python has a compact construct, called *list comprehension*, for generating lists from a for loop:

  ```python
  Cdegrees = [-5 + i*0.5 for i in range(n)]
  Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]
  ```

- General form of a list comprehension:

  ```python
  somelist = [expression for element in somelist]
  ```

- We will use list comprehensions a lot, to save space, so there will be many more examples
List Comprehension with Condition

• General form:
 somelist = [expr. for i in list if condition]

• Example: list = [1,-2,3,-4,5,-1]
 from math import sqrt
 sqrtlist = [sqrt(i) for i in list if i >= 0]
What if we want to have a for loop over elements in Cdegrees and Fdegrees?

We can have a loop over list indices:

```python
for i in range(len(Cdegrees)):
    print Cdegrees[i], Fdegrees[i]
```

Alternative construct (regarded as more "Pythonic"):

```python
for C, F in zip(Cdegrees, Fdegrees):
    print C, F
```

Example with three lists:

```python
>>> l1 = [3, 6, 1]; l2 = [1.5, 1, 0]; l3 = [9.1, 3, 2]
>>> for e1, e2, e3 in zip(l1, l2, l3):
...     print e1, e2, e3
...             
...     3 1.5 9.1
...     6 1 3
...     1 0 2
```

What if the lists have unequal lengths? The loop stops when the end of the shortest list is reached
Exercise

• Write a function even() that takes a list and return a new list containing all even numbers in the original list. Can you use list comprehension to do this?
FUNCTIONS AND BRANCHING
Local variables in Functions

Example: sum the integers from start to stop

```python
def sumint(start, stop):
    s = 0  # variable for accumulating the sum
    i = start  # counter
    while i <= stop:
        s += i
        i += 1
    return s
```

```
print sumint(0, 10)
sum_10_100 = sumint(10, 100)
```

- `i` and `s` are local variables in `sumint` – these are destroyed at the end (return) of the function and never visible outside the function (in the calling program); in fact, `start` and `stop` are also local variables

- In the program above, there is one global variable, `sum_10_100`, and two local variables, `s` and `i` (in the `sumint` function)

- Read Chapter 2.2.2 in the book about local and global variables!!
Recall the formula \(y(t) = v_0 t - \frac{1}{2} g t^2 \):

We can make a Python function for \(y(t) \):

```python
def yfunc(t, v0):
    g = 9.81
    return v0*t - 0.5*g*t**2
```

sample calls:
y = yfunc(0.1, 6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)

Functions can have as many arguments as you like

When we make a call \(yfunc(0.1, 6) \), all these statements are in fact executed:

```python
t = 0.1  # arguments get values as in standard assignments
v0 = 6
g = 9.81
return v0*t - 0.5*g*t**2
```
The $y(t,v_0)$ function took two arguments

Could implement $y(t)$ as a function of t only:

```python
>>> def yfunc(t):
...     g = 9.81
...     return v0*t - 0.5*g*t**2
... >>> yfunc(0.6)
... NameError: global name 'v0' is not defined
```

v_0 must be defined in the calling program program before we call `yfunc`

```python
>>> v0 = 5
>>> yfunc(0.6)
1.2342
```

v_0 is a global variable

Global variables are variables defined outside functions

Global variables are visible everywhere in a program

g is a local variable, not visible outside of `yfunc`
Environments for Functions

• Example:

```python
da = 100
def f(x):
da = 5
    global a
    a = 5
    f(a)
    f(a)
```

```python
da = 100
def f(x):
da = a+1
```

```python
da = 100
def f(x):
da = a+1
```

```python
da = 100
def f(x):
da = a+1
```
Functions can return multiple values

Say we want to compute $y(t)$ and $y'(t) = v_0 - gt$:

```python
def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt
```

call:
position, velocity = yfunc(0.6, 3)

Separate the objects to be returned by comma

What is returned is then actually a tuple

```python
>>> def f(x):
...     return x, x**2, x**4
...
>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type 'tuple'>
>>> x, x2, x4 = f(2)
```
Exercise

- Problem Set: Week 2, Question 8 and 10
The function

\[L(x; n) = \sum_{i=1}^{n} \frac{1}{i} \left(\frac{x}{1+x} \right)^i \]

is an approximation to \(\ln(1 + x) \) for a finite \(n \) and \(x \geq 1 \)

Let us make a Python function for \(L(x; n) \):

```python
def L(x, n):
    x = float(x) # ensure float division below
    s = 0
    for i in range(1, n+1):
        s += (1.0/i)*(x/(1+x))**i
    return s
```

\[x = 5 \]

from math import log as ln
print L(x, 10), L(x, 100), ln(1+x)
We can return more: also the first neglected term in the sum and the error $(\ln(1 + x) - L(x; n))$:

```python
def L2(x, n):
    x = float(x)
    s = 0
    for i in range(1, n+1):
        s += (1.0/i)*(x/(1+x))**i
    value_of_sum = s
    first_neglected_term = (1.0/(n+1))*(x/(1+x))**(n+1)
    from math import log
    exact_error = log(1+x) - value_of_sum
    return value_of_sum, first_neglected_term, exact_error

# typical call:
x = 1.2; n = 100
value, approximate_error, exact_error = L2(x, n)
```
Let us make a table of $L(x; n)$ versus the exact $\ln(1 + x)$.

The table can be produced by a Python function.

This function prints out text and numbers but do not need to return anything – we can then skip the final `return`.

```python
def table(x):
    print '\nx=%g, ln(1+x)=%g' % (x, log(1+x))
    for n in [1, 2, 10, 100, 500]:
        value, next, error = L2(x, n)
        print 'n=%-4d %-10g (next term: %8.2e ' \\
            'error: %8.2e)' % (n, value, next, error)
```

Output from `table(10)` on the screen:

```
x=10, ln(1+x)=2.3979
n=1 0.909091 (next term: 4.13e-01 error: 1.49e+00)
n=2 1.32231 (next term: 2.50e-01 error: 1.08e+00)
n=10 2.17907 (next term: 3.19e-02 error: 2.19e-01)
n=100 2.39789 (next term: 6.53e-07 error: 6.59e-06)
n=500 2.3979 (next term: 3.65e-24 error: 6.22e-15)
```
Consider a function without any return value:

```python
def message(course):
    print "%s is the greatest fun I’ve ever experienced\n    " % course
message(‘INF1100’)  # store the return value
```

None is a special Python object that represents an "empty" or undefined value – we will use it a lot later.

No return value implies that None is returned
Functions can have arguments of the form name=value, called keyword arguments:

```python
>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
    print arg1, arg2, kwarg1, kwarg2

>>> somefunc('Hello', [1,2])  # drop kwarg1 and kwarg2
Hello [1, 2] True 0       # default values are used

>>> somefunc('Hello', [1,2], kwarg1='Hi')
Hello [1, 2] Hi 0         # kwarg2 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi')
Hello [1, 2] True Hi      # kwarg1 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi', kwarg1=6)
Hello [1, 2] 6 Hi         # specify all args
```

If we use name=value for all arguments, their sequence can be arbitrary:

```python
>>> somefunc(kwarg2='Hello', arg1='Hi', kwarg1=6, arg2=[2])
Hi [2] 6 Hello
```
Consider a function of t, with parameters A, a, and ω:

$$f(t; A, a, \omega) = Ae^{-at} \sin(\omega t)$$

We can implement f in a Python function with t as positional argument and A, a, and ω as keyword arguments:

```python
from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
    return A*exp(-a*t)*sin(omega*t)

v1 = f(0.2)
v2 = f(0.2, omega=1)
v2 = f(0.2, 1, 3)  # same as f(0.2, A=1, a=3)
v3 = f(0.2, omega=1, A=2.5)
v4 = f(A=5, a=0.1, omega=1, t=1.3)
v5 = f(t=0.2, A=9)
```
A program contains functions and ordinary statements outside functions, the latter constitute the main program

```python
from math import * # in main

def f(x): # in main
    e = exp(-0.1*x)
    s = sin(6*pi*x)
    return e*s

x = 2 # in main
y = f(x) # in main
print 'f(%g)=%g' % (x, y) # in main
```

The execution starts with the first statement in the main program and proceeds line by line, top to bottom.

def statements define a function, but the statements inside the function are not executed before the function is called.
Math functions as arguments to Python functions

- Programs doing calculus frequently need to have functions as arguments in other functions
- We may have Python functions for
 - numerical integration: \(\int_a^b f(x) \, dx \)
 - numerical differentiation: \(f'(x) \)
 - numerical root finding: \(f(x) = 0 \)
- Example: numerical computation of \(f''(x) \) by

\[
 f''(x) \approx \frac{f(x - h) - 2f(x) + f(x + h)}{h^2}
\]

```python
def diff2(f, x, h=1E-6):
    r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
    return r
```

- No difficulty with \(f \) being a function (this is more complicated in Matlab, C, C++, Fortran, and very much more complicated in Java)
Application of the \texttt{diff2} function

Code:

```python
def g(t):
    return t**(-6)

# make table of g''(t) for 14 h values:
for k in range(1,15):
    h = 10**(-k)
    print 'h=%.0e: %.5f' % (h, diff2(g, 1, h))
```

Output \((g''(1) = 42)\):

```
h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939
h=1e-14: 0.00000
```
What is the problem? Round-off errors...

- For $h < 10^{-8}$ the results are totally wrong
- We would expect better approximations as h gets smaller
- Problem: for small h we add and subtract numbers of approx equal size and this gives rise to round-off errors
- Remedy: use float variables with more digits
- Python has a (slow) float variable with arbitrary number of digits
- Using 25 digits gives accurate results for $h \leq 10^{-13}$
- Is this really a problem? Quite seldom – other uncertainties in input data to a mathematical computation makes it usual to have (e.g.) $10^{-2} \leq h \leq 10^{-6}$
Exercise

• The map function takes a function and a list, and returns a new list which is the result of applying the function to each item in the list. Write your own version of the map function, myMap, using list comprehension.
If tests:

 if x < 0:
 value = -1
 elif x >= 0 and x <= 1:
 value = x
 else:
 value = 1

User-defined functions:

 def quadratic_polynomial(x, a, b, c):
 value = a*x*x + b*x + c
 derivative = 2*a*x + b
 return value, derivative

 # function call:
 x = 1
 p, dp = quadratic_polynomial(x, 2, 0.5, 1)
 p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:

 def f(x, A=1, a=1, w=pi):
 return A*exp(-a*x)*sin(w*x)
An integral
\[\int_a^b f(x) \, dx \]
can be approximated by Simpson’s rule:

\[\int_a^b f(x) \, dx \approx \frac{b - a}{3n} \left(f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(a + (2i - 1)h) + 2 \sum_{i=1}^{n/2-1} f(a + 2ih) \right) \]

Problem: make a function `Simpson(f, a, b, n=500)` for computing an integral of \(f(x) \) by Simpson’s rule. Call `Simpson(...)` for \(\frac{3}{2} \int_0^\pi \sin^3 x \, dx \) (exact value: 2) for \(n = 2, 6, 12, 100, 500 \).
def Simpson(f, a, b, n=500):
 """
 Return the approximation of the integral of \(f \)
 from \(a \) to \(b \) using Simpson’s rule with \(n \) intervals.
 """

 h = (b - a)/float(n)

 sum1 = 0
 for i in range(1, n/2 + 1):
 sum1 += f(a + (2*i-1)*h)

 sum2 = 0
 for i in range(1, n/2):
 sum2 += f(a + 2*i*h)

 integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
 return integral
def Simpson(f, a, b, n=500):
 if a > b:
 print ‘Error: a=%g > b=%g’ % (a, b)
 return None

 # Check that n is even
 if n % 2 != 0:
 print ‘Error: n=%d is not an even integer!’ % n
 n = n+1 # make n even

 # as before...
 ...
 return integral
def h(x):
 return (3./2)*sin(x)**3

from math import sin, pi

def application():
 print 'Integral of 1.5*sin^3 from 0 to pi:'
 for n in 2, 6, 12, 100, 500:
 approx = Simpson(h, 0, pi, n)
 print 'n=%3d, approx=%18.15f, error=%9.2E' % application()
Property of Simpson’s rule: 2nd degree polynomials are integrated exactly!

```python
def verify():
    """Check that 2nd-degree polynomials are integrated exactly.""
    a = 1.5
    b = 2.0
    n = 8
    g = lambda x: 3*x**2 - 7*x + 2.5  # test integrand
    G = lambda x: x**3 - 3.5*x**2 + 2.5*x  # integral of g
    exact = G(b) - G(a)
    approx = Simpson(g, a, b, n)
    if abs(exact - approx) > 1E-14:  # never use == for floats!
        print "Error: Simpson’s rule should integrate g exactly"

    verify()
```

Exercise

• Problem Set: the rest of the problems
Happy Lunar New Year

YEAR OF SNAKE