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Abstract

Layer decomposition from a single image is an under-
constrained problem, because there are more unknowns
than equations. This paper studies a slightly easier but
very useful alternative where only the background layer has
substantial image gradients and structures. We propose to
solve this useful alternative by an expectation-maximization
(EM) algorithm that employs the hidden markov model
(HMM), which maintains spatial coherency of smooth and
overlapping layers, and helps to preserve image details of
the textured background layer. We demonstrate that, using
a small amount of user input, various seemingly unrelated
problems in computational photography can be effectively
addressed by solving this alternative using our EM-HMM
algorithm.

Keywords: Image decomposition, computational photog-
raphy, vision for graphics.

1. Introduction

The problem of separating a set of overlapping layers
from a single image is a severely under-constrained prob-
lem. Previous approaches used depth from focus [10], mul-
tiple images and motion [12], repetitive motion [9], inde-
pendent component analysis [4], and sparsity priors [6].
This paper considers a slightly easier version of the prob-
lem: given a single image where only the background
layer has substantial image gradients and structures, can
we recover the background layer as well as the overlap-
ping/transparent layers? That is,

I (x; y) = F (x; y) + � (x; y)B (x; y) (1)

whereI is the input image.F is a set of overlapping lay-
ers possibly with soft and transparent boundaries.B is the
background layer, which can be attenuated by a smooth
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transparent layer� . I; F; B and� are RGB vectors (� is
modeled to respond differently each color channel). This
slightly easier problem is still ill-posed, as given a single
imageI there is still an in�nite number ofF , smooth� , and
B that gives the sameI . Suppose we �rst extractF , and let
I 0 be the resultant image after extractingF , the equation
can be reduced to a form equivalent to the intrinsic image
representation [1]

I 0(x; y) = � (x; y)B (x; y) (2)

which was solved using multiple images [14] and a sin-
gle image [13]. By taking the advantage of the smooth
� assumption, this paper takes an alternative approach to
achieve better results in various problems in computational
photography which requires a small amount of user interac-
tion: Figure 1 shows an example of extracting a glass layer
with substantial transparency. Note that the background is
well separated from the glass layer. Figure 2 shows an ex-
tracted smooth shadow with a hard shadow boundary, in-
dicating that both high and low frequency components co-
exist in the layer. Note that the textures of the imageB are
preserved after shadow removal.

It turns out that the same algorithm we proposed, EM-
HMM, can be used to extract bothF and � . If � is not
refractive,B can be simply obtained byI 0=� . Related to
our work is natural image matting, which has been used to
extract, from a single image, overlapping layers with trans-
parent boundaries. Figure 3 demonstrates that while cur-
rent state-of-the-art matting techniques [3, 11, 5] can also be
used to extract the martini glass, theF layers (shown here as
the glass, highlight, and environment re�ection layers com-
bined) produced by our EM-HMM algorithm, which em-
ploys the hidden Markov model and considers �rst-order
spatial neighborhood, is more homogeneous and less sus-
ceptible to the structure caused by the observed background.
As we shall demonstrate, our method outputs a set of color
labels per pixel which serves to reduce the inherent color
ambiguities. When properly employed, we believe that such
reduction should be very useful to image matting algorithms
in general.
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(a) (b) (c) (d)
Figure 1. (a) Input image, (b) user scribbles for collectingrelevant color cues, (c) transparent layer� , and (d) the background imageB
extracted by our method.

(a) (b)

(c) (d)
Figure 2. (a) Input image. (b) Input strokes. (c) extracted shadow� , (d) the backgroundB after removing the shadow. Note that the
extracted transparent shadow is smooth, of spatially-varying intensity, and free of grass textures. The region delimited by pink loops are
processing regions.

2. Overall Approach

Based on the above analysis, our algorithm steps are:

1. ExtractF (section 3). We �rst extract overlapping lay-
ers which can be opaque or substantially transparent
like the martini glass shown in Figure 3. Our EM-
HMM algorithm produces a set of color labels at each
pixel.

2. Extract� (section 4). Next, we solve Eqn. 2. We
use the same EM-HMM algorithm to determine the
amount a pixel is attenuated by the smooth� . Given
that � is smooth andB contains most image gradi-

ents, we incorporate these considerations as optimiza-
tion constraints in the Bayesian MAP estimation.

3. Extract F

We develop an EM-HMM algorithm to extractF . Our
approach can be regarded as soft segmentation: for each
pixel i , compute an optimal set ofn soft labels,� ij 2 [0; 1],P n

j � ij = 1 wheren is the total number of color segments
in the image. In fact, many natural image matting tech-
niques can also be used ifn = 2 and ifF is largely opaque.
In this paper, we take advantage of the smoothness assump-
tion, so we can extractn � 2 overlapping color segments
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Figure 3. The input image, the trimap (used in Bayesian and Poisson matting), the input strokes (used in our method), and theF results of
natural image matting using Bayesian matting, Poisson matting, the closed-form solution, and our method. For this example, our result is
less susceptible to the background textures or structures.

which can be substantially transparent in front of a complex
background.

The user-scribbled color samples (e.g. Figures 1–3) pro-
vide the necessary color constraints for our EM-HMM al-
gorithm. Consider the two scenarios: 1) Suppose we know
the expected color, then we can estimate the corresponding
soft region label. 2) Suppose on the other hand the soft re-
gion label is known, it will help the color label estimation.
In our case, both colors and soft labels are unknown. This
becomes a “chicken-and-egg” problem. We propose to op-
timize the two variables by alternating optimization. EM
algorithm, which is one form of alternating optimization
guaranteed to converge [2], is a good choice of the algo-
rithm.

The following EM derivations except the novel use of
HMM are quite standard and should be familiar to readers
with knowledge of EM (a gentle tutorial is available [2]).

By using a stroke-based interface to sample colors, we
model the collected color statistics using Gaussians to al-
low uncertainty in subsequent estimation. In our formula-
tion the three color channels can be processed individually
or together. Both produce similar visual results, so for sim-
plicity of notations, the following equations assume a single
channel.

Using terminologies typical of EM formulations, let
O = ff � 1; � 1g; f � 2; � 2g; � � � ; f � n ; � n gg, j = 1 � � � n, be
the set of observations where� j and� j are respectively the
mean and standard variation of the colors sampled inside
regionj . Let R = f r i g be the set of hidden variables that
describes the classes labels at all pixels.r i = j if pixel

i belongs to regionj . The cardinality ofR , jR j, is equal
to the total number of pixelsN to be processed (e.g. the
whole image or the pixels inside the object silhouette). The
objective function is given by

� � = arg max
�

P(O; R j� ) (3)

where P(O; R j� ) is the complete-data likelihood to be
maximized and� = f ci g is a set of parameters to be esti-
mated, whereci is the expected color at pixeli . To estimate
� � , the EM algorithm computes the expected value of the
complete-data log-likelihoodlogP(O; R j� ) with respect
to R given the observationO and the current estimated pa-
rameter� 0:

Q(� ; � 0) =
X

R 2 '

logP(O; R j� )P(R jO; � 0) (4)

where' is the space containing all possibleR with cardi-
nality equal toN .

3.1. Expectation

We �rst de�ne the marginal probabilityp(Ojr i ; � 0) so
that we can maximize the expectationQ de�ned by Eqn. 4
by proceeding to the next iteration given the current param-
eter estimation. Ifr i = j , ci should be similar to� j :

p(Ojr i ; � 0) /

8
>><

>>:

exp(� j ci � � 1 j 2

2� 2
1

) if r i = 1
...

exp(� j ci � � n j 2

2� 2
n

) if r i = n

(5)
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Figure 4. The HMM model for estimating the set of soft labels at
each pixel.

Without any prior information, we letp(r i = j j� 0) = 1
n be

the mixture probability. Given� 0 only, we have:

p(Oj� 0) /
1
n

X

j

exp(�
jci � � j j2

2� 2
j

) (6)

Let � ij be the probability of pixeli belonging to regionj ,
which is the output soft label we need. Then,� ij = p(r i =
j jO; � 0), or

� ij =
p(r i = j; Oj� 0)

p(Oj� 0)
=

p(Ojr i = j; � 0)p(r i = j j� 0)
p(Oj� 0)

= exp( �
jci � � j j2

2� 2
j

)=
X

m

exp(�
jci � � m j2

2� 2
m

) (7)

3.2. Maximization

Given the marginal distribution� ij estimated in the E-
Step, we can maximize the likelihood in Eqn. 3 by optimiz-
ing the parameters in Eqn. 4 using the estimated� ij . We
make use of the assumption of smooth layers, and decom-
poseP(O; R j� ) into a combination of simple elements
based on the Hidden Markov Model (HMM) assumptions:
1) The hidden variabler i depends only on the hidden vari-
ables of its �rst-order-neighbors. 2) The observation ati de-
pends only on the hidden variable ati . These assumptions
incorporate the smoothness consideration. See Figure 4 for
a graphical representation of the HMM assumptions. There-
fore:

P(O; R j� ) =
Y

i

Y

k2N i

p(r i jr k ; � )p(Ojr i ; � ) (8)

whereN i is a set of right and bottom neighbors ofi and
p(r i jr k ; � ) = 1 if k does not exist.

With Eqn. 8,Q(� ; � 0) in Eqn. 4 can be rewritten as:

X

R 2 '

logP(O; R j� )P(R jO; � 0) (9)

=
X

R 2 '

logf
Y

i

Y

k2N i

p(r i jr k ; � )p(Ojr i ; � )gP(R jO; � 0)

=
X

R 2 '

X

i

X

k2N i

logf p(r i jr k ; � )gp(r i ; r k jO; � 0)

+
X

R 2 '

X

i

logf p(Ojr i ; � )gp(r i jO; � 0) (10)

Here, we have two terms to be de�ned:p(r i jr k ; � ) and
p(r i ; r k jO; � 0) (Note thatp(Ojr i ; � ) was de�ned simi-
larly as Eqn. 5 andp(r i = j jO; � 0) = � ij ).

Forp(r i ; r k jO; � 0) which models the �rst-order connec-
tion between two adjacent nodes with hidden variablesr i

andr k , regardless of the values ofr i andr k , it equals to1
because of the HMM assumptions (Figure 4).

For p(r i jr k ; � ), we assume that if the neighborhood
pixel pair belongs to the same region, the expected color
should be similar, i.e., ifr i = r k , the colorci should be
similar to the colorck and vice versa.

Suppose the noise model obeys the Gaussian distribu-
tion, p(r i jr k ; � ) can be modeled as:

p(r i jr k ; � ) =
1

�
p

2�
exp(�

jci � ck j2

2� 2 ) (11)

where� 2 describes the variance of the region color. Since
r i 2 f 0; 1; � � � ; ng, we rewriteQ(� ; � 0) as

Q(� ; � 0)

=
X

R 2 '

X

i

X

k2N i

logf p(r i jr k ; � )gp(r i ; r k jO; � 0)

+
X

i

X

j

logf p(Ojr i = j; � )g� ij (12)

=
X

i

X

k2N i

log
�

1

�
p

2�
exp(�

jci � ck j2

2� 2 )
�

+
X

i

X

j

log

 
1

� j
p

2�
exp(�

jci � � j j2

2� 2
j

)

!

� ij

(13)

where� controls the measurement uncertainty (we simply
set � equals to the mean of all� j ). To maximizeQ, we
differentiateQ w.r.t ci and set the �rst derivative equal to
zero to obtain the parameter updating rule:

ci =

0

@
X

k2G i

ck + � 2
X

j

� ij

� 2
j

� j

1

A =

0

@4 + � 2
X

j

� ij

� 2
j

1

A

(14)
whereGi is �rst-order neighbors of pixeli . Hence, in the M-
Step, the updating rule (computeci by Eqn. 14) is applied.
The E-Step (compute� ij by Eqn. 7) and M-Step are iterated
alternately until convergence. The initial assignment ofci

is set as the pixel's colorI i .

4. Extract �

After extracting� s which represent the soft segmenta-
tion result forF , we extract� . The user marks up on the
image to gather color samples in the background outside
and inside of the transparent layer, where the two marked-
up regions should have similar textures/structures.
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Figure 5. (a) Input synthetic image where the observed colorof a pixel may be explained by a mixture of as many as six colors. The soft
segments corresponding to (a) produced by using (b) our proposed method. (c) The ground truth soft segments. Note that the estimated
soft segments are displayed by multiplying the estimated soft labels with the input image.

Let the two marked-up regions O =
ff � 1; � 1g; f � 2; � 2gg. By letting n = 2 the EM-HMM
algorithm is used to compute the probability� ij , i.e.,j = 0
denotes unattenuated background, andj = 1 otherwise.

We modify the Bayesian MAP optimization in [15] to
estimate� by incorporating� s to improve the results, where
the optimal� is given by

� � = arg max
�

P(B � j� )P(� ) (15)

whereB � is a rough estimation of the background without
transparency attenuation. The estimation ofB � is the same
as that ofF̂ � in section 3.3 of [15] after replacing the corre-
sponding symbols, which solves a Poisson equation subject
to a guidance �eld.

P(B � j� ). To discern true image structures from image
gradients caused by transparency attenuation, we use� to
encode the probability of the observed image gradient at
pixel x caused by attenuation. Let

mx;y = exp
�

�
j� x 1 � � y1j2

2� 2
m

�
(16)

where� m is the uncertainty in the smoothness measure-
ment. By assuming the error distribution to be Gaussian,
we de�ne the likelihoodP(B � j� ) as

exp

 

�

P
f x;y g2R jjr I 0

x;y � mx;y r (�B � )x;y jj2

2� 2
1

!

(17)

which measures the �delity between the image gradients of
I 0 and the estimated�B � weighted bym. f x; yg are �rst-
order neighbors in the valid processing region ofI 0, denoted
above byR, obtained by masking out irrelevant regions by
intelligent scissor and extractingF by EM-HMM. � 1 is the
standard deviation of the measurement error.

P(� ). By assuming the transparent object to be ho-
mogeneous, we use the following smoothness priorP(� )
weighted bymx;y as

exp

 

�

P
f x;y g2R mx;y jj � x � � y jj2

2� 2
2

!

(18)

where� 2 is the uncertainty in the smoothness prior.

5. Results

For all examples in this paper, it takes less than a minute
to process each case on a 2.8 GHz PC with 1G RAM.
Synthetic case.Figure 5(a) shows a hexagon with spatially-
varying colors, produced by compositing six soft color re-
gions as shown. A single pixel's color can be explained by
as many as six colors. Figure 5(b) shows the results pro-
duced by our method. (c) shows the ground truth soft seg-
ment of the synthetic image. To initialize the algorithms,
we used the same set of mean colors estimated byk-means
clustering (k = 6 ) for both of the methods. We calcu-
lated the difference of the estimated region label with the
ground truth region label by(

P
i j� ij � � G

ij j)=N, where� ij

is the estimated region label ati , � G
ij is the corresponding

ground truth. The mean difference from the six region for
our method is 7.0 (scale 0-255).
Glass and Shadow removal.We demonstrated in Figure 1
glass removal, and in Figure 2 shadow removal. Shadowed
(resp. glass) and unshadowed (resp. non-glass) color sam-
ples are collected and then input to our EM-HMM algo-
rithm. The extracted smooth layer, which is of spatially-
varying intensity and free of any textures, can be used in
image and shadow matting, Figure 6.

Figure 7 shows a result of separatingF and� , using ex-
ample in [16]. For the results onF , we marked a stroke on



(a) (b)
Figure 6. The extracted transparent layers can be used in (a)image matting and (b) shadow matting.

Input GlassF Color markup smooth� Composite

Figure 7. Layer decomposition from a single image (input image from [16]). After extracting the highlight layer, the user marks up on the
image attenuated and unattenuated background to gather color and texture statistics, in order for the system to optimize the smooth� free
of any textures.

the highlight. The object boundary was obtained from the
object silhouette, which is given by GrabCut [8] or intelli-
gent scissors [7]. To extract the blue liquid, we �rst mask
out theF . Then, in the “color markup”, we indicate to the
system the background colors before and after the attenu-
ation, after which the Bayesian MAP estimation automati-
cally produces the smooth� shown. The image composite
is shown on the right. Note that we do not consider refrac-
tion.

Colorization. We perform soft color segmentation respec-
tively in both the gray image and the example image, the
latter of which provides the color statistics. Figure 8 shows
our result. In this example, we show the effects when the
color statistic� j in the observationO is adjusted by user
to achieve different effects. In this example theO's in both
the gray and example images are obtained automatically by
K-mean clustering instead of user strokes. Here we input
different� j as different initialization for the EM-HMM al-
gorithm. In Figure 8(d) is the result with small� j , and
Figure 8(g) shows the result with large� j . From the cor-

responding zoomed images shown in Figure 8(e), (f), (h)
and (i), we can notice that the boundary of the result with
small � j is quite unnatural and noticeable. This is because
using small� j is analogous to a hard segmentation. The
boundary of the result with large� j , on the other hand, is
more natural. But a large� j makes the blue color in the sky
overlap with the green color of the grass in the color space.
So the blue color depicted in Figure 8(g) is not as pure as
that in Figure 8(d). Figure 8(c) shows the result when global
colorization is performed.

6. Conclusion
Layer separation from a single image is a massively ill-

posed problem in its general form. This paper proposes
to solve an easier but useful alternative, and presents an
EM-HMM algorithm to separate smooth layers and the
substantially-textured background from a single image. The
EM alternately optimizes the soft label and the expected
color at each pixel, where the HMM is used to maintain
spatial coherency of the smooth layers. The image textures
of the background layer are explicitly preserved by solving
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(d) (e) (f) (g) (h) (i)
Figure 8. Color transfer to a gray scale image. (a) The image to be colorized. (b) The example image, which provides the relevant color
statistics for colorizing (a). (c) Result by global color transfer. (d) Result by our method, with small� j input for the sky and the grass
regions. (e) and (f) Zoom in of respective layers in (d). (g) Result with large� j . (h) and (i) Zoom in of respective layers in (g). See the
electronic version for color visualization.

the Bayesian MAP estimation problem. Our proposed al-
gorithm is demonstrated to produce good results in various
computational photography applications. The executable of
our code will be available at the �rst author's homepage.
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