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Abstract.  Three-dimensionally (3D) knitted technical textiles are spreading into various applications in 

aerospace, automotive, construction, fashion, marine and defence, due to their versatile, tuneable properties. 

This allows optimization of their geometric, structural and functional performances on fibre-, yarn- and fabric 

levels by customizing yarn materials, knit patterns and geometric shapes. In this work, we present a multi-

scale modelling and simulation framework for the prediction of the nonlinear orthotropic mechanical 

behaviour of single jersey knitted textiles and its experimental validation. This ability to efficiently simulate 

the mechanical behaviour is an essential step towards the development of a digital workflow for the design 

and manufacture of 3D knitted technical textiles with variable, optimally distributed yarn materials, stitch 

types and knitting parameters and will enable advanced functional behaviour and complex geometries of 

textile structures. On the meso-scale, representative volume elements (RVEs) of the fabric are modelled as 

single yarn loops and the mechanical deformation behaviour of RVEs is homogenized using periodic 

boundary conditions. The yarns are modelled as nonlinear 3D beam elements and numerically discretized 

using an isogeometric collocation method, where a frictional contact formulation is used to model inter-yarn 

interactions. On the macro-scale, fabrics are modelled as membrane elements with nonlinear orthotropic 

material behaviour, which is parameterized by a response surface constitutive model obtained from the meso-

scale homogenization. The input parameters of the yarn-level simulation, i.e., mechanical properties of yarns 

and geometric dimensions of yarn loops in the fabrics, are determined experimentally and subsequent meso- 

and macro-scale simulation results are evaluated against reference results and mechanical tests of knitted 

fabric samples. Overall, a good agreement between computational predictions and experimental results is 

achieved for samples with varying geometries, here stitch values. 
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1. Introduction  
Beyond the traditional textile industries such as apparel and fashion, there has been increasing interest in 

technical applications of textiles and textile composites in aerospace, architecture, biomedical, civil 

engineering, defence, marine and medical industries. These functional, technical and three-dimensional (3D) 

textiles provide a wide range of desirable properties for those industries and their applications, such as 

structural integrity, tailorable mechanical behaviour and designed anisotropy, as well as 3D shape-ability [1].  

Among the techniques used for the fabrication of such technical textiles, i.e. braiding, knitting, weaving, 

and non-weaving, knitting has to-date a fairly modest market share [2]. However, with the latest advances in 

whole garment, computerized numerical control (CNC) knitting machine technology, it is now possible to 

knit complex 3D shapes [3] using high performance yarns made from materials such as carbon, glass, metals 

                                                           
  Corresponding author. Tel.: + 65 8147 6749. 

   E-mail address: oliver_weeger@sutd.edu.sg. 

Proceedings of the 8th World Conference on 3D Fabrics and Their Applications 

Manchester, UK, 28-29 March 2018 

mailto:oliver_weeger@sutd.edu.sg


and shape memory alloys for advanced technical applications such as active fabrics [4], artificial muscles [5] 

or auxetic structures [6].  

Adopting the flexibility of the CNC knitting technology with respect to yarn types and materials, knitting 

patterns and their parameters, as well as their seamless geometric shape-ability, will thus have great impact 

on the usage and application of these technical textiles. However, this will require advanced design, 

modelling, simulation, optimization and fabrication capabilities and computational tools that consider the 

complex mechanical behaviour of knitted textiles which arises from the interplay of geometry and material. 

An important aspect is the multi-scale nature of this behaviour. For knitted fabrics, three scales are typically 

distinguished: the composition of a yarn in terms of fibres and plies at the micro-scale (fibre-level), the 

intermeshing of yarns into a knitting pattern at the meso-scale (yarn-level), and the repetition and geometric 

variation of patterns forming a fabric on the macro-scale (fabric-level). 

In this paper, we aim at an important step towards computational design and optimization for the 

fabrication of 3D knitted textiles. We focus on single jersey, plain weft-knitted textiles and establish a multi-

scale simulation framework for the prediction of their nonlinear orthotropic mechanical behaviour. Previous 

works characterizing the meso-scale mechanics and tensile properties of knitted textiles include analytical 

models where yarns are modelled using elastica theory [7], numerical methods where yarns are modelled 

using elastica [8], string structure [9] or beam models [10], as well as finite element methods where yarns are 

modelled as elastic continua [11]–[13]. These methods are then either used to model and simulate a whole 

fabric based on the meso-scale representation [8], [9], [13], or to homogenize its behaviour based on the 

simulation of representative volume elements (RVEs) [7], [10]–[12]. While the former approach is 

computationally expensive, the latter can only be extended to non-uniform tensile loading and complex 

shapes of textiles by using homogenized constitutive properties in a nonlinear multi-scale simulation 

framework [14]. Concurrent multi-scale simulation, where many meso-scale problems have to be solved in 

the course of solving a macro-scale problem, is again computationally very expensive. The sequential multi-

scale approach, however, requires a constitutive model that captures the nonlinear orthotropic behaviour of 

knitted textiles, which has to be based either on the homogenization of meso-scale RVE simulations or on 

phenomenological observations [15]. Here, we adopt the technique of response surface constitutive models 

[16], [17], where either the strain energy function or the stress-strain relationship are interpolated or 

approximated based on meso-scale RVE simulations.  

The further outline of this paper is as follows: In Section 2, we introduce the methods used in this work, 

i.e. the geometrical model for parametric description of single jersey knits (2.1), the meso-scale, yarn-level 

modelling and simulation approach based on modelling of yarns as nonlinear 3D beams (2.2), the macro-

scale, fabric-level modelling approach using a nonlinear membrane model (2.3), the derivation of a nonlinear 

orthotropic response surface constitutive model, which is based on homogenization of meso-scale 

simulations (2.4), and details on the yarns, knitted samples and measurement techniques employed for 

physical validation (2.5). In Section 3, we then present and discuss some results of our computational 

framework and their validation against mechanical tests performed with textiles knitted with different loop 

lengths. Finally, we conclude the paper with a summary and outlook of future research in Section 4. 

2. Materials and methods 

2.1. Geometric modelling of knit  patterns and yarns 

Various geometrical models have already been proposed and established for modelling of single loops of 

weft-knitted single jersey fabrics. In this work, we implement the model proposed by Vassiliadis et al. in [18] 

which was used for mechanical simulations in [11]. 

This model assumes that the yarn has a uniform, circular cross-section and features the two-fold 

symmetry of an interlocked loop. Using the input parameters of wale width ύ, course height ὧ and yarn 

radius ὶ, as well as a free parameter ὸ that is chosen to minimize the loop length ὰ, a quarter of the yarn 

centreline curve of a loop is modelled as three continuous, analytically defined arc sections (see [18] for 

details). Subsequently, these three curves are interpolated using a single B-Spline curve. Here, we typically 

use degree ὴ τ and ὲ ρς control points for the B-Spline interpolation and ensure that the first and 

second derivatives at the ends of these quarter curves are continuous when replicated to form the complete 

unit cell of an interlocked loop, see Figure 1a.  

Since the knitting machine settings only allow to specify a desired average loop length ὰ, which is actually an 

output parameter of the geometric model, we need to identify the necessary input parameters ὧ and ύȢ Thus, 

we developed an image processing algorithm that computes the average values over dozens of courses and 



wales from a given photo of a single jersey knitted fabric sample, see Figure1b. Furthermore, we also 

measure the actual diameters of yarns used and their tensional Young’s moduli Ὁ. Since the cross-sections 

of yarns are typically not perfectly round and have a rather elliptical shape, we consider their minimal radius 

ὶ. However, in a tight knit, the yarn cross-sections are compressed at contact points and the geometrical 

model is only reasonable if ὶ ύȾψ. Thus, we choose ὶ ÍÉÎ ὶȟύȾψ. 

2.2. Meso-scale, yarn-level modelling and simulation 

In the meso-scale modelling step, the mechanical behaviour of representative volume element or unit cell 

of a knitted fabric, in this case a single interlocked loop, is simulated. Here, we use an approach based on the 

above-introduced geometrical model and the modelling of yarns using 3-dimensional beam theory. 

As a compromise between the computationally expensive continuum modelling of yarns and the less 

accurate and versatile modelling using simple 1- or 2-dimensional beam theories, we employ the geometri-

cally exact, elastic Simo-Reissner beam or Cosserat rod theory [19], which accounts for tension and shear 

deformation and is thus suitable for modelling both thick and thin 3D beams. It is based on representation of 

the rod as a framed curve described by its centreline, a spatial curve  ►ίȡ πȟὒᴼ ᴙ , and a frame 

╡ίȡ πȟὒᴼ Ὓὕσȟ╡ ▀ȟ▀ȟ▀   describing the orientation of the cross-sections along the centreline, 

Figure 2a. Based on these kinematic variables in the current and initial configurations, given by  ►ȟ╡  and  

►ȟ╡  respectively, the translational (shear and tension) strains  Ⱡ ╡► ╡►  and rotational (curvature 

and twist) strains  ⱥ ╡ ╡ ╡ ╡   are calculated. Then, the corresponding stresses  Ɑ ═Ⱡ  and  

Ⱶ ╒ⱥ  are determined through linear elastic constitutive relationships and the governing equilibrium 

equations of linear and angular momentum are formulated in terms of the internal forces  ▪ ╡Ɑ  and 

moments  □ ╡Ⱶ: 

    
▪  ▪ ȟ

□  ► ▪  □ Ȣ
ίᶅɴ πȟὒȟ ρ  

The geometric and material properties of the rod cross-sections, i.e. area ὃ “ὶ, second moment of area 

Ὅ “ὶȾρς , Young’s modulus Ὁ, and Poisson’s ratio ’, enter the formulation through the constitutive 

matrices ═ and ╒. The elastic energy of the rod is given by  Ὗ ᷿ⱠⱭ  ⱥⱵ Ὠί  and it shall be noted 

that in this way the initial configuration of the loop given by  ►ȟ╡   is assumed to be the relaxed configu-

ration of the yarn. Besides the balance equations, boundary conditions for ► and/or ╡ȟ□ȟ▪ have to be 

applied. We apply periodic boundary conditions based on the type of analysis that is carried out, namely 

uniaxial tension in wale-wise (longitudinal) and course-wise (transversal) directions, biaxial tension, or pure 

shear, see Figure 2b-e. 

For the numerical discretization and computational simulation of the governing equations of the Cosserat 

rod model we use an isogeometric collocation method [20], which is based on the representation of the 

kinematic variables using B-Spline and NURBS curves. This enables an efficient integration with the 

geometrical modelling procedure, as the B-Spline curve ►  obtained from the geometric model can be 

directly used in the computational method. Yarn-to-yarn contacts with frictional contact are also resolved 

within this framework, here with a penalty approach [21]. 

Important issues that affect the accuracy of the modelling approach using a 3D beam formulation are (a) 

the anisotropy of the yarns due their fibrous microstructure, (b) the change of cross-section radius from ὶ to 

     
(a)  Model for yarn centrelines (b) 50x50 mm photo horizontal edges (courses) vertical edges (wales) 

Figure 1. (a) Vassiliadis model for quarter loop is interpolated by a B-Spline curve (shown in 3D view) and then 

mirrored to generate a full loop model with 4 curves for the yarn centrelines (shown in plain view). (b) Image-based 

parameter identification of course height and wale width using edge detection.  



ὶ due to compression and pre-strain of the yarns and (c) the rigidity of the cross-sections due the chosen 

mechanical model:  

a) Similar to the approach taken in [11], we use two different values for the Young’s modulus in the 

translational and rotational constitutive matrices ═ and ╒, where  Ὁ Ὁ   is equal to the Young’s 

modulus measured in the yarn tension tests and  Ὁ πȢυ Ὁ. This approach is equivalent to assuming 

that the Young’s modulus is graded within the cross-section, i.e. stiffer than Ὁ in its centre and softer 

than Ὁ at its boundary. This correlates to the actual fuzziness of fibrous and multi-ply yarns.  

b) For consistent geometrical modelling of the loops, the yarn radius is described as  ὶ ÍÉÎ ὶȟύȾψ. 

However, this potential decrease of the radius affects the translational and rotational stiffness of the 

mechanical model and thus we “balance” it by scaling the constitutive matrices by  ═ͯ ὶȾὶ    and  

╒ͯ ὶȾὶ . Since the compression of the yarns originates from pre-tensioning during the knitting 

process, we scale the constitutive matrices again by  ═ȟ╒ͯ ὶȾὶ , which accounts for a nonlinear 

increase in Young’s modulus when the yarn’s a subject to tension strains.  

c) The yarns cannot compress further during the simulated deformation process of the loops due to the 

rigidity of the cross sections in conventional beam formulations. However, this does not align with 

significant cross-section deformations that can be observed at contact points between yarn segments in 

physical fabrics, especially for multi-ply yarns. While the parameters of a contact penalty approach are 

typically chosen such that only a minimal penetration of contact surfaces occurs, we chose them to 

mirror the actual compressive properties of the yarns and allow for a certain amount of penetration that 

compensates for cross-section deformations. The contact penalty force takes the following form: Ὂ

Ὧ , where Ὣ is the penetrated distance, Ὧ πȢπρ Ὁ ὶȾὶ  and ὴ σ ὶȾὶ . 

As mentioned above, choices of those parameters are partially due to geometrical and mechanical consider-

ations, and partially to best fit the experimental results obtained. 

2.3. Macro-scale, fabric-level modelling 

On the macro-scale, knitted fabrics show large deformation behaviour due to their general flexibility and 

complex constitutive behaviour which results from their microstructure. Thus, they can be modelled using 

thin shell or membrane models with nonlinear kinematics, large strains and hyperelastic constitutive laws.  

Since fabrics are in general considered thin, the Kirchhoff hypothesis applies and the shell continuum 

can be modelled using Kirchhoff-Love theory by describing its midsurface  ►ȡ ꜝ Ṓᴙ ᴼ ᴙ   and the 

normal vector field  ▪ȡ ꜝ ᴼ ᴙ ,  which always remains perpendicular to the mid-surface and is thus given 

in terms of the first and second derivatives of the surface, i.e.  ▪‚ȟ‚
►ȟ ►ȟ

►ȟ ►ȟ
.  Subsequently, the 

            
(a) Cosserat rod model of yarn (b) course-wise (c) wale-wise (d) biaxial (e) pure shear 

Figure 2. (a) Modelling of quarter loop yarn curve as Cosserat rod. (b-e) Boundary conditions and illustrations for 

course-wise and wale-wise uniaxial tension, biaxial tension, and pure shear. Each four characters next to a rod end 

indicate the applied boundary conditions for x-, y-, and z-displacements and rotations (top to bottom, 0=zero-

displacement, p=periodic, f=free, x=prescribed x-displacement, y=prescribed y-displacement) 



position of a point in the shell continuum is given as  ●ȡꜝ ȟ ᴼᴙȟ●‚ȟ‚ȟ‚ ►‚ȟ‚

‚▪‚ȟ‚ , see Figure 3a, and the usual strain measures such as deformation gradient  ╕  
●

●
,  Cauchy-

Green strain tensor  ╒ ╕╕  and  Green-Lagrange (GL) strain tensor  ╔ ╒ ╘  can be computed. 

These are used to evaluate hyperelastic constitutive laws, which are typically defined using a strain-energy 

function ‪, and consequently the second Piola-Kirchhoff (PK2) stress tensor is given as  ╢
╔
ς
╒

.  

Further details on the subsequent formulation of balance equation and finite element discretization using an 

isogeometric approach can be found in [22]. 

2.4. Orthotropic response surface material model and homogenization 

Simulating knitted textiles that are subjected to large strains and stresses requires nonlinear hyperelastic 

material modelling. This is complicated by their anisotropic behaviour due to the nature of the knitting 

process and its resulting microstructure that can cause substantially different material behaviour in course 

and wale directions. Modelling this nonlinear orthotropic constitutive behaviour is non-trivial, since most 

commonly used hyperelastic material models are only applicable to isotropic materials, while general 

orthotropic material models are mostly only derived for linear constitutive behaviour.  

In [15], an orthotropic strain energy function with 9 coefficients was presented for membrane models 

and fitted to textile measurement data, while in [16] the orthotropic strain energy function was parameterized 

using a response surface model that was also fitted to measurement data. We adopt a similar approach, where 

the second Piola-Kirchhoff (PK2) stress tensor is directly parameterized in terms of the Green-Lagrange (GL) 

strain tensor using a B-Spline response surface [17]. 

In this model, it is assumed that the shear components of the GL strain and PK2 stress are decoupled 

from the tensile strain and stress components. Thus, the constitutive relationship between GL strain and PK2 

stress tensors can be expressed in Voigt vector notation as: 

╔
Ὁ
Ὁ
Ὁ

ȟ ╢
Ὓ
Ὓ
Ὓ

ȟ ╢╔

Ὓ Ὁ ȟὉ

Ὓ Ὁ ȟὉ

Ὓ Ὁ

Ȣ ς 

Consequently, we can parameterize the constitutive relationship ╢╔  using two response surfaces, 

Ὓ Ὁ ȟὉ   and  Ὓ Ὁ ȟὉ , and one response curve, Ὓ Ὁ . Here, the response curves and surfaces 

are parameterized using tensor-product B-Splines, e.g.: 

Ὓ Ὁ ȟὉ  ὄ Ὁ  ὄ Ὁ  ὧ  ȟ σ 

where ὄ’s are given B-Spline basis functions and ὧ’s are the corresponding control points, see Figure 3b. 

Using splines of at least degree 2 and ὅ-continuity ensures that the constitutive relationship is differentiable 

and the tangent stiffness matrix can be derived.  

      
(a) Shell model (b) Response surface Ὓ Ὁ ȟὉ   (c) Setup of fabric tensile test 

Figure 3. (a) Shell model is described by midsurface ►‚ȟ‚  (blue) and normal vector ▪‚ȟ‚ Ȣ Orthotropic material 

direction • arising from meso-structure is illustrated by yarn loop (red). (b) Illustration of B-Spline response surface 

(colored) that interpolates data generated from biaxial simulations (wireframe). (c) Setup for fabric tests on MTS tensile 

testing machine with video extensometer. 



To consider arbitrary, spatially varying orientations of the orthotropic material directions in our model, 

the GL strain ╔ needs to be transformed from the global coordinate system to the local coordinate system 

defining the orthotropic directions,  ╔ ╣╔. Then, the local PK2 stress ╢╔ is evaluated using the response 

surfaces and finally transformed back to the global coordinate system,  ╢ ╣╢. Here, ╣ is the 

transformation matrix that performs the rotation of the stress and strain tensors in Voigt notation by the angle 

‰ between orthotropic directions with global directions, see Figure 3a. We have implemented this approach 

in Abaqus/CAE using a user-defined material subroutine (UMAT) for the CPS4R 4-node plane stress 

element. 

To obtain the response surfaces and their points, we apply a homogenization approach. We carry out 

yarn-level simulations, where the macroscopic deformation gradients are prescribed to the RVEs and 

periodic boundary conditions are applied. The data for the Ὓ  and Ὓ  response surfaces can be obtained 

from biaxial tensile test simulations with prescribed, macroscopic deformation gradient ╕  and for Ὓ  it 

can be obtained from pure shear tests with deformation gradient ╕ : 

╕
ρ ‐ π
π ρ ‐

ȟ ╕
ρ ‐
‐ ρ

ȟ τ 

where ‐  and ‐  are the prescribed tensile strains and ‐  is the prescribed shear strain (see boundary 

conditions in see Figure 2d+e). While the conversion from the prescribed strains ‐  and deformation 

gradients ╕  and ╕  to the GL strain ╔ is straight forward,the resulting forces in both simulations and 

physical experiments are typically measured in the global coordinate system and the area in the undeformed 

configuration is used to obtain the first Piola-Kirchhoff (PK1) stress tensor ╟, e.g., ὖ ὊȾὃ , which 

then needs to be converted to the PK2 stress using the well-known formula  ╢ ╕ ╟. 

2.5. Knitting materials and testing methods 

For the physical validation of our multi-scale simulation framework, we fabricate single jersey, weft-

knitted fabric samples using a Shima Seiki MACH2®XS computerized, 15-gauge whole garment knitting 

machine. Loop length per stitch is directly specified via the i-DSCS active yarn delivery control system. The 

yarn used across all samples is a 2-ply Ne 20/2’s ring-spun cotton yarn, equivalent to a linear density of 59.1 

Tex. We measure the loop length by unravelling and straightening several courses of the knitted fabrics to 

obtain the average loop length. A region of the fabric is also photographed to measure the course height and 

the wale width via image processing. 

Subsequently, we prepare the fabric samples with minimized distortion and/or out-of-plane curling 

effects for tensile testing. The knitted fabrics are ironed to remove wrinkles and allowed to reach their dry 

relaxed state in an environment of 22 ºC and 65% RH. 20 courses from the upper and lower regions of fabric 

are then removed and rectangular strips are cut out using a template from the unstretched pinned fabric. For 

this instance, we use 50x50mm samples to ensure that the fabric is not subjected to out-of-plane distortions 

which influences strain measurements. Moreover, additional sample lengths of 100, 150, 200 mm are also 

prepared for experimental testing. 

We carry out uniaxial tensile tests on both the yarn and the fabric samples using the Instron 5943 and 

MTS Criterion universal testing machines, see Figure 3c. Samples are clamped in between pneumatic jaws 

and cross-head displacement is applied at a rate of 5.0 mm/min. To measure the strain, markers were 

attached near the centre of the sample and tracked using a calibrated video extensometer. These 

measurements showed good agreement with the strain being calculated from the crosshead movement. Since 

knitted fabrics are sensitive towards manufacturing uncertainties and variations, pre-tension and the curling 

effect we tested 3-5 samples for each loop length and obtained the reaction forces. Subsequently, we always 

plot the mean values of those measurements to validate the simulated results. Standard deviations were 

documented to be within the range of 5%-20%. 

3. Results and discussion 
For the application and validation of our multi-scale simulation framework for weft-knitted textiles, we 

consider two steps: first, we perform course- and wale-wise uniaxial tensile test simulations on the yarn-level 

and compare those results to reference results from literature and physical tests to assess the accuracy of the 

macro-scale simulation method and the homogenization approach. Secondly, we perform biaxial and pure 

shear simulations on the yarn-level RVEs to generate the response surface material models and subsequently 

use these for macro-scale simulations and validation.  



3.1. Yarn-level simulation and validations 

Comparison against reference results 

To validate our meso-scale simulation approach, we first compare our method against reference results 

obtained from literature. We refer to the “sample 2” case in Vassiliadis et al. [11] with modelling parameters 

ύ πȢψσσ mm, ὧ πȢτψφ mm, Љ ςȢχτ mm, ὶ ὶ πȢπωςσ mm and Young’s modulus Ὁ 800 MPa. 

For the simulations, we use the isogeometric collocation method with a refined spline discretization with ὴ
τȟὲ φψ and as contact friction parameter we use ‘ πȢρυ. We perform strip-biaxial tension tests for both 

course- and wale-wise tension, i.e., with strain ratios 1:0 and 0:1 respectively, and plot the results in terms of 

strain-vs-force in gf/cm in Figure 4, along with the experimental results taken from [11]. Both strain-force 

curves show a good agreement with the experimental reference results with similar errors as the continuum 

finite element simulation results that are also provided in [11], see Figure 4a. This validates our meso-scale 

simulation method and its implementation. 

Simulations and tests for varying stitch values 

As a step towards modelling and optimizing technical fabrics with varying parameters, we now carry out 

meso-scale simulations for the fabric samples we have knitted with the cotton 20s/2 yarns and varying stitch 

value machine settings ranging from 4.5 to 7.0 mm. 

 
(a) Comparison of strain-force curves for reference experiments and simulations 

 

(b) Course-wise at 13.0% strain 

 

(c) Wale-wise at 9.1% strain 

Figure 4. (a) Comparison of simulation results for course- and wale-wise strip biaxial tension tests against experimental 

reference results obtained in Vassiliadis et al. [11] and (b+c) visualization of deformed RVE shapes. 

   
Machine 

setting 
Stitch value  4.5 5.0 5.5 6.0 6.5 7.0 

Fabric 

sample 

measurement 

Loop length 4.50 4.95 5.50 6.02 6.52 6.90 

Wale width 1.26 1.31 1.33 1.381 1.41 1.45 

Course height 0.88 1.08 1.26 1.420 1.64 1.82 

Geometric 

model 

Adjusted yarn radius 0.16 0.16 0.17 0.17 0.18 0.18 

Model loop length 4.60 5.13 5.53 5.99 6.49 6.97 

Table 1. Evaluation of geometric modelling parameters from fabric samples for varying stitch values from 4.5 to 7.0 

mm (all values given in mm). Pictures on top of table show 5x5 mm images of the fabrics and boxes indicate size of a 

loop RVE. 



First, we have determined the input parameters for the geometric model of the single jersey loop RVEs, 

namely wale width, course height and adjusted yarn radius, see Table 1. The measured loop lengths only 

deviate from the stitch value settings by a maximum of 1.4%, and the resulting loop lengths of the generated 

B-Spline curves show slightly more deviation from the measured loop lengths at a maximum of 3.5%. The 

adjusted yarn radius ὶ ÍÉÎ ὶȟύȾψ  is smaller than ὶ πȢρω mm in all cases, which means that all the 

fabrics are tight for the given stitch values.  

Using the B-Spline curves generated for the centreline description of the yarns, we now perform uniaxial 

tensile test simulations for both course and wale directions for each stitch value for a strain range of 0-20%. 

The B-Spline curves for the geometry have degree ὴ τ and ὲ ρς, and are refined to ὲ φψ for the 

isogeometric rod simulation. The material parameters are based on yarn tensile tests for the Young’s 

modulus Ὁ ψπ MPa, Poisson’s ratio is assumed as ’ πȢσ, and the parameters of the contact formulation 

are chosen as outlined above in Section 2.2 with friction parameter ‘ πȢρυ. The runtime for one rod-based 

simulation with 21 incremental load steps to generate the strain-force curves is around 1-2 minutes on a 

standard, 8 core desktop PC, which is faster than a comparable, nonlinear continuum finite element 

simulation of around 15 minutes. 

We compare the results of tensile tests performed with the physical knitted samples against simulations 

of uniaxial tensile tests, since our tested samples are much longer than the ones used in [11] and are thus 

closer to uniaxial rather than strip-biaxial strain state. The strain-force curves are reported in Figure 5 for 

 

Course-wise uniaxial tension 

simulation at 20% strain: 

Љ τȢυ mm: Љ χȢπ mm: 

 

 

Figure 5: Comparison of experimental (dashed) and uniaxial simulation (solid) results for course-wise tension tests for 

varying loop length from 4.5 to 7.0 mm. Example deformations at 20% strain shown for 4.5 mm and 7.0 mm. 

 

Wale-wise uniaxial tension  

simulation at 20% strain: 

Љ τȢυ mm: Љ χȢπ mm: 

 

 

Figure 6: Comparison of experimental (dashed) and uniaxial (solid) and strip-biaxial (solid thin) simulation results for 

wale-wise tension tests for varying loop length from 4.5 to 7.0 mm. Example deformations at 20% strain shown for 4.5 

mm and 7.0 mm. 



course-wise and Figure 6 for wale-wise tension, where the strains values refer to the prescribed, macroscopic 

strains of the RVE in the simulation and to the engineering strain based on the cross-head deformation in the 

physical tensile tests. Force values are reported in gf/cm.  

Overall, the comparison between experimental tests and computational simulations shows a good 

agreement and the trends of softening of the strain-force curves for increasing loop length are well captured. 

Especially for the course-wise tension tests, the qualitative and quantitative behaviour of the tests matches 

the uniaxial tension simulations well and both, the relatively linear behaviour of each strain-force curve and 

the trend for increasing loop length, are consistent in experiments and simulations. In the wale-wise tension 

case, the deviations between measurements and simulations tend to be larger and the trend for increasing 

loop length is less consistent. Although the nonlinear stiffening effect with increasing strain is quantitively 

well captured, the reaction forces of the tight fabric (4.5 mm) are underestimated, whereas for looser ones 

(6.5 mm and 7.0 mm) the forces are over-estimated. This could be related to the further tightening of the 

loops and compression of yarns occurring in the wale-wise tension scenario of tight knits. Thus, we have also 

carried out strip-biaxial simulations in this case and plotted them in Figure 6, too. As expected, the biaxial 

simulations are stiffer than the uniaxial ones and tend to over-estimate the test results for looser fabrics, but 

match the experiments better for tighter knits with shorter loop length. 

Furthermore, for stitch value 5.5 mm, we have also determined the ratios of lateral versus transversal 

contractions at 20% strain from video-extensometer measurement made at the centre of the tested samples. 

For these “effective Poisson’s ratios”  ’Ӷ   in course-wise and  ’Ӷ   in wale-wise tension, we 

obtain  ’Ӷ πȢτσ  and  ’Ӷ πȢψς in the simulations, which is in good agreement with the experimental 

observations of  ’Ӷ πȢτρ  and  ’Ӷ πȢχς.  

3.2. Homogenization and fabric-level simulations 

Having validated the accuracy of the meso-scale simulations in the preceding section, we now move on 

to the generation of orthotropic response surface material models using homogenization on the yarn-level 

and to the application of those models in macro-scale simulations. 

First, we begin with the generation of the data for the response surface material model. As discussed 

above, the response surfaces interpolate the stress-strain data obtained from biaxial and pure shear yarn-level 

RVE simulations. Here, we exemplify this process for the cotton 20s/2 single jersey fabrics with stitch value 

5.5 mm. For fixed ratios of ‐ :‐ , the biaxial tests are simulated by increasing the load factor from 0 to 1. 

Thus, the data obtained is star-shaped in the Ὁ ȾὉ -domain and each simulation run is corresponding to a 

radial line from the centre to the boundary of the surface, see Figure 7. For shear tests, the shear strain ‐  is 

increased from 0 to 30% to obtain the curves for Ὓ Ὁ  . These data points are then interpolated by B-

Spline surfaces and curves, here of degree ὴ ς, to obtain the response surface and curve parameterizations 

of the nonlinear orthotropic material model. 

Finally, we use those material models in the macro-scale, textile level simulations. We simulate the 

tensile behaviour of a 50x50 mm patch of the single jersey knitted cotton 20s/2 yarn with stitch value 5.5 

mm along the course- and wale-wise directions. For course-wise, the patch is clamped at the left side and a 

 

Figure 7: Homogenization of constitutive behaviour of single jersey knitted cotton 20s/2 yarn at stitch value 5.5 mm. 

Response surfaces Ὓ Ὁ ȟὉ  and Ὓ Ὁ ȟὉ  from biaxial simulations and response curve  Ὓ Ὁ  from pure 

shear simulations are shown. Values of PK2 stress ╢ are given in MPa*mm, GL strain ╔ is dimensionless. 



uniform displacement is applied on the right boundary, while for wale-wise it is clamped at the bottom and a 

uniform displacement is applied on the top boundary. The results for using 10x10 finite elements are shown 

in Figure 8. The visualization of deformed shapes and Cauchy stresses at 10% and 9% applied, nominal 

strain for course- and wale-wise tension cases in Figure 8b-c indicate the coupling of tensile with shear 

modes for this type of applied boundary conditions. It can also be seen that the lateral contraction in the 

wale-wise tension case is much higher than in the course-wise case, which is in accordance with the earlier 

stated observations made regarding the effective Poisson’s ratios. The comparison of the strain-force curves 

in Figure 8a shows good agreement of the macro-scale simulations with the actual tensile tests and the meso-

scale, uniaxial tension simulations taken from Figure 5 and Figure 6. This serves as an initial validation of 

the multi-scale simulation approach. 

4. Conclusions 
In this work, we have presented a nonlinear multi-scale modelling and simulation framework for knitted 

textiles, which marks a first step towards the development of a digital workflow for design and fabrication of 

3D knitted textiles. Our approach is based on the modelling and simulation of the meso-scale mechanical 

behaviour of knitted textiles using a nonlinear beam model to represent the yarns of a representative volume 

element of the stitch type, here being the single jersey knitting pattern. This approach was validated against 

reference results from existing literature and tensile tests with fabrics made from cotton yarn at various stitch 

values. Then, the yarn-level behaviour was homogenized to obtain a nonlinear, orhtotropic constitutive 

model for the macro-scale, which is represented through B-Spline response surface models. This material 

model was then employed in a nonlinear membrane formulation for fabric-scale simulations. 

Next steps and future research directions include further validations of the multi-scale simulation 

approach for more complex loading scenarios and extending the macro-scale model and homogenization 

procedure to shell models including bending deformation, which will allow to simulate more complex 3-

dimensional fabric geometries and deformations. Furthermore, we want to generalize the approach towards 

geometric modelling of other stitch types on the meso-scale, e.g. double jersey, rib- and purl-based fabrics 

and inlaid knitting patterns. Ultimately, we aim at developing an optimization framework, that can vary the 

meso-scale parameters such as knitting pattern, stitch values and orientation to obtain a desired macroscopic 

behaviour of a knitted textile.  

 
(a) Strain-force curves for course- and wale-wise tests 

„  

 

„  

 

(b) Deformed shapes and stresses for course-wise tension 

„  

 

„  

 

(c) Deformed shapes and stresses for wale-wise tension 

Figure 8: Macro-scale simulation of 50x50 mm textile patch. (a) Comparison of strain-force curves of fabric-level 

simulations (macro sim.) with tensile tests and meso-scale simulation for both course- (CW) and wale-wise (WW) 

tension. (b) Cauchy stress states „  and „  for course-wise at 10% nominal strain and (c) „  and „  for wale-wise 

tension at 9% strain. 
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