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Physical limits on cellular directional mechanosensing
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Many eukaryotic cells are able to perform directional mechanosensing by directly measuring minute spatial
differences in the mechanical stress on their membranes. Here, we explore the limits of a single mechanosensitive
channel activation using a two-state double-well model for the gating mechanism. We then focus on the physical
limits of directional mechanosensing by a single cell having multiple mechanosensors and subjected to a
shear flow inducing a nonuniform membrane tension. Our results demonstrate that the accuracy in sensing the
mechanostimulus direction not only increases with cell size and exposure to a signal, but also grows for cells with
a near-critical membrane prestress. Finally, the existence of a nonlinear threshold effect, fundamentally limiting
the cell’s ability to effectively perform directional mechanosensing at a low signal-to-noise ratio, is uncovered.
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I. INTRODUCTION

Cells usually dwell in complex microenvironments and,
therefore, are inherently sensitive to a variety of biomechanical
stimuli, such as blood flow and organ distensions, which induce
mechanical stresses in the membrane and cytoskeleton of
cells. Recent studies indicate that mechanical forces have a far
greater impact on cell functions than previously appreciated.
Eukaryotic cells, such as epithelial cells, amoebae, and neu-
trophils, are remarkably sensitive to shear flow direction [1–4].

More quantitatively, endothelial cells have been found to re-
spond to laminar shear stress levels in the range of 0.02–0.16 Pa
with a cellular alignment in the direction of the flow for a shear
stress beyond 0.5 Pa [5,6]. In other instances, some eukaryotic
cells performed parallel or perpendicular cellular alignment
to the shear-flow direction [4]. Xenopus laevis oocytes were
found to respond to laminar shear stress of magnitude 0.073 Pa,
whereas, the amoeba Dictyostelium discoideum exhibits shear-
flow induced motility in the direction of creeping flows with
shear stresses as low as 0.7 Pa [7]. Similar magnitudes
of this shear-stress based mechanostimulus for other types
of cells are reported in Ref. [8]. To better appreciate the
exquisite sensitivity of those cells [9], it is worth highlighting
the minuteness of those mechanostimuli. For instance, a
characteristic shear stress of magnitude σ ∼ 1 Pa generates a
maximum excess membrane tension �γmax ∼ σR, which, for
a typical cell size of R ∼ 10 μm, is on the order of 10 μN m−1.
According to Rawicz et al. [10], such a value represents a
minuscule membrane tension. Furthermore, this membrane
tension induced by the shear stress is 1 or 2 orders of magnitude
smaller than typical lytic resting membrane tensions: γ0 ∼
1 to 2 mN m−1 [11]. From the dynamical standpoint, the lower
the shear rate, the longer the exposure required for a cell to
respond [3]. Finally, mechanosensing has been shown to be of
paramount importance to self-organizing behaviors of those
social cells [12].

Mechanosensitive ion channels (MSCs) are present in
nearly all cell types [13]; they are integral membrane pro-
teins responding over a wide dynamic range to mechanos-
timuli subsequently transduced into electrochemical signals
[1]. There appear to be two modes of action for MSCs:
(i) those that receive stress from fibrillar proteins resulting

in gating, and (ii) cases in which tension in the surrounding
bilayer forces the channel to open. Our focus is on the
latter type—the stretch-activated channels—in which the
stimulus mechanically deforms the membrane’s lipid bilayer
that, in turn, triggers MSC conformational changes through
an intricate mechanical coupling [1,14]. It is important to
recall that the high sensitivity of the cellular mechanosensory
apparatus does not originate from the MSCs themselves
but from an efficient coupling between the channel gating
machinery and the cellular structures that transmit the force [8].
The existence of calcium-based stretch-activated MSCs in the
amoeba Dictyostelium discoideum has recently been revealed
by Lombardi et al. [15], which is believed to be at the root
of its shear-flow induced motility [7] improved by calcium
mobilization [16].

MSCs adopt conformational states with distinct functional
properties in response to the applied tension along the plane
of the cell membrane instead of the normal pressure [17–19].
The gating of these transient receptor channels is, to a good
approximation, represented by a two-state double-well model
[14,20] [see Figs. 1(a) and 1(b)]. Directional mechanosensing
requires cells to make accurate decisions based on biased
stochastic transitions between MSC conformational states [see
Figs. 1(c) and 1(d)]. Although a fundamental bound on the
accuracy of directional chemical gradient sensing was derived
[21,22], no theory exists for the physical limits of directional
mechanosensing.

II. SINGLE MECHANOSENSITIVE ION
CHANNEL SENSING

In this section, our focus is the physical limitations in
sampling by a single MSC, subject to a mild shear flow
inducing minute changes �γ � γ0 to the lateral membrane
tension γ = γ0 + �γ .

A. Two-state double-well model for the gating mechanism

We consider a single MSC, which is a specialized trans-
membrane protein that can undergo a distortion in response to
external mechanical forces applied through the lipid bilayer
itself. At its simplest, this mechanical deformation can be
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described as a conformational transition between closed and
open states separated by a free energy barrier denoted as �h.
In the particular case of the gating of the well-studied bacterial
large conductance mechanosensitive channel MscL, the energy
difference between the closed and the fully open states in
the unstressed membrane was found to be 18.6kBT with an
associated energy barrier �h ∼ 38kBT [23]. Without loss of
generality, we assume that both conformational states, open
and closed, are symmetrically positioned with respect to the
free energy barrier, which implies that the absolute area change
between the bottom of each wells is �A/2. We account for
the elasticity of each state—assumed identical and harmonic
for both states—by considering a quadratic dependence of
the free energy in the lateral membrane tension γ [20]. The
unidirectional transition rates, given in Eyring’s form, are

kon = k0 exp

(
−γ �A/2

kBT
− γ 2A

2KAkBT

)
, (1)

koff = k0 exp

(
γ �A/2 − �h

kBT
− γ 2A

2KAkBT

)
, (2)

where k0 is a scaling factor, A is the MSC in-plane surface
area, �A is its change in the in-plane area when opening up,
γ is the lateral membrane tension, and KA is the area stretch
modulus. For clarity, we omit the thermal energy kBT in what
follows. We consider, here, a weak mechanostimulus inducing
minute changes �γ in the membrane tension γ = γ0 + �γ

with �γ � γ0, γ0 being the cell’s membrane prestress. At the
first order in �γ , the unidirectional transition rates can be
expressed as

kon = k0 exp

(
−γ0�A

2
− γ 2

0 A

2KA

)
exp

(
− (1 + α)

q

2

)
, (3)

koff = k0 exp

(
γ0�A

2
− �h − γ 2

0 A

2KA

)
exp

(
(1 − α)

q

2

)
, (4)

where q = �γ �A is the extra work generated by the
extracellular mechanical signals. The nondimensional pa-
rameter α = 2γ0A/(KA�A) represents the ratio of the total
energy γ0�A/2 expanded for the in-plane deformation of
the MSC to the energy KA(�A/2)2/A, associated with the
membrane thinning due to the membrane volume conversa-
tion [14]. In the particular case of MscL gating, one finds
α ∼ 0.58, given that γ0 = 3.5kBT/nm2, �A = 6 nm2, A =
30 nm2, and KA = 60kBT/nm2 [10,14,23].

Such a perturbation �γ to the lateral membrane tension
induces a stretching of the MSC, triggering its opening if the
associated free energy surpasses the barrier �h. An internal
feedback mechanism is responsible for closing down the
MSCs which are relentlessly switching between open and
closed states (see Fig. 1). This dynamics is characterized
by the binary sequence s(t), spent in both possible states.
This process is essentially a Markovian telegraph process:
Memoryless transitions are entirely determined by a switching
rate [24]. Therefore, the lengths of open and closed intervals
have exponential distributions with means 1/kon and 1/koff ,
respectively, kon and koff being the unidirectional transition
rates in conformational states.
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FIG. 1. (Color online) Schematic of the two-well model for
the MSC gating. (a) Energy profile with prestress γ0 and (b) with
additional prestress γ = γ0 + �γ ; A is the MSC in-plane surface
area, and �A is its change when opening up; �h is the intrinsic
energy barrier in the absence of applied tension; KA is the area stretch
modulus of the harmonic profiles, taken identical for both wells.
(c) and (d) Associated time series s(t) of the residence periods T
spent in open or closed states.

B. Signal estimation by linear regression

To know how well a cell can determine the shear stress
applied to its membrane, it is assumed that information is
derived from its MSC states based on the concept of “perfect
instrument” registering switching events [25]. MSCs switch
between open and closed states with s(t) = 1 for t ∈ Ton

and s(t) = 0 for t ∈ Toff . We use the time series s(t)—as
being the time record of MSC states measured by a perfect
instrument—to investigate the dynamics of a given MSC
over a long signal exposure time, i.e., for T � 1/kon and
T � 1/koff . We perform a linear regression (LR) of the binary
time series s(t). In the limit of long time series T , with starting
time t0, the mean and variance of s(t) over the observation are
classically given by [24],

S = 1

T

∫ t0+T

t0

s(t)dt = kon

kon + koff
, (5)

σ 2
s = 〈(δs)2〉 = konkoff

(kon + koff)2
. (6)

Still, in the limit of long time series,

S � 〈s〉 = kon

kon + koff

∣∣∣∣
q=q̃

= 1

1 + exp(q̃ − �heff)
, (7)

where 〈s〉 is the ensemble average of s(t), q̃ is the true value of
q, and �heff = �h − γ0�A is the effective free energy barrier
reduced by the existing prestress action. The signal can be
inferred from the fraction of MSC active time S with S � 〈s〉
for long T . To compute the variance of S, the covariance of s(t)
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is needed, and it can be calculated directly from its definition,

G(t,t ′) ≡ 〈s(t)s(t ′)〉 − 〈s(t)〉2 = σ 2
s e−|t−t ′ |/τ ,

= σ 2
s e−|t−t ′ |(kon+koff ). (8)

If we repeat this observation many times, starting at wildly
different times t0, the variance of S is

σ 2
S = 1

T 2

∫ T

0
dt

∫ T

0
dt ′G(t,t ′) = 2

T
koffkon

(koff + kon)3
. (9)

A standard LR yields

δq = kon

koff
δ

(
S

1 − S

)
= kon

koff

δS

S2
, (10)

and the following estimate for q = �γ �A:

qLR = �heff + ln
S

1 − S
= �heff + ln

Ton

Toff
, (11)

where �heff = �h − γ0�A is the effective energy barrier,
reduced by the existing membrane prestress γ0. From Eqs. (10)
and (11), we obtain the associated variance,

σ 2
q = k2

on

k2
off

σ 2
S

S4
= 2(kon + koff)

T (konkoff)
= 2

n
, (12)

in terms of the number of registered switches n defined as

n ≡ T konkoff

kon + koff
, (13)

and physically representing the number of transitions between
the two conformational states. Note that, if kon � koff or kon �
koff, n can simply be expressed as n � T /max(k−1

on ,k−1
off ).

C. Signal estimation using a maximum likelihood estimator

It is still unclear how exactly a cell performs its signal
estimation based on the register of switching events. The
LR presented in the previous section appears as the most
rudimentary form of statistical estimation. Alternatively, a
maximum likelihood estimate (MLE) [26] can be sought
for the two-state discrete-valued telegraph process which is
generated by switching values at jump times of a Poisson
process [24].

For a long exposure to a signal—i.e., for large T = Ton +
Toff— and given the unidirectional transition rates kon and koff ,
the likelihood function is obtained by acknowledging the fact
that we are in the presence of a stationary Poisson process,

L = (konTon)n

n!
e−konTon

(koffToff)n

n!
e−koffToff , (14)

where Ton (respectively, Toff) is the total open (respectively,
closed) time and n is the number of switching events. When
omitting the unessential constant terms, the log-likelihood
function is cast as

ln L = −(konTon + koffToff) + n ln(koffkon). (15)

The MLE is considered to provide an estimate of q. To this aim,
maxima of the first-order derivative of the above log-likelihood

are sought(
∂ ln L

∂q

)
(q = q̂MLE) =−konTon(1 + α) − koffToff(1 − α)

+ 2nα= 0, (16)

which yields

q̂MLE = �heff + ln
Ton

Toff
. (17)

To quantify the uncertainty associated with the above maxi-
mum likelihood estimation, one has to consider the second-
order derivative of the log-likelihood function,

∂2 ln L
∂q2

= −konTon(1 + α)2 − koffToff(1 − α)2 (18)

to ascertain the normalized variance in the long exposure to
the signal limit,

σ 2
q = −

〈(
∂2 ln L

∂q2

)
(q = q̂MLE)

〉−1

= 2

(1 + α2)n
. (19)

According to the Cramér-Rao lower bound (CRLB), the
variance σ 2

q sets the lowest measurement uncertainty through
sampling [26].

The uncertainties of mechanosensing using LR and MLE
[Eqs. (12) and (19)] show that, for a given stimulus exposure,
statistical fluctuations limit the precision with which a single
MSC can determine the stimulus amplitude. Similar to
chemosensing, MLE yields a more accurate mechanosensing
lower limit than LR [21], albeit for fundamentally different
reasons. Indeed, the two estimates for q given by the LR and
the MLE are identical, whereas, the associated variances are
different. In this particular problem, the linear regression is
intrinsically limited by its linear character and only captures
the lowest-order term which does not involve α. This is, of
course, no longer the case with the MLE. From a physical
standpoint, it is like the LR is not able to account for the
thinning effects of the lipid bilayer; the variations in the
thickness of the lipid bilayer are negligible for high values of
KA, i.e., for near-zero values of α. The very presence of α =
2γ0A/(KA�A) in Eq. (19) highlights the connection between
the mechanical properties of the cell and the measurement
uncertainty [27].

III. LIMITS OF CELLULAR MECHANOSENSING

In this section, our focus is the physical limitations in
sampling by an array of MSCs distributed across the cell,
subject to a mild shear flow inducing nonuniform minute
changes �γ � γ0 to the lateral membrane tension γ =
γ0 + �γ .

A. Model of a cell subjected to a linear shear flow

We now turn to directional mechanosensing by an entire
cell, focusing on the idealized case of N uniformly distributed
MSCs on the equator (only) of a spherical cell of radius R.
Observing the MSC distribution is experimentally challenging,
but it is very unlikely that it is homogeneous. For the sake
of analytical simplicity, our model does not consider this
fact. We assume the MSCs to be independent, neglecting
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FIG. 2. (Color online) Cell deformation under a linear shear flow
with shear rate G. The elliptic curve represents the intersection of the
ellipsoid with the xy plane. The circular curve is the initial membrane,
and �e1 is the direction of the largest elongation rate eigenvector [29];
the dot represents a given MSC.

inter-MSC interactions. One might argue that local interactions
among the MSCs could result globally in a cooperative effect
which may help smaller cells better discriminate the signal
direction—see Ref. [28] regarding the cooperativity between
chemical receptors for chemotactic Escherichia coli. The
present analysis would, thus, provide conservative estimates
for this problem.

Fluid shear stress, which occurs naturally in a variety
of physiological conditions, is one of the most important
mechanostimuli [1–4]. Furthermore, cell locomotion generates
Stokes flows which can be sensed by neighboring cells [3,12].
Specifically, fluid shear stress induces a nonuniform tension
on the cell’s lipid bilayer triggering an asymmetric stretch
activation of some MSCs, themselves, giving rise to an in-
tracellular biochemical cascade driving pseudopod extensions
preferentially in the direction of the tension gradient [2]. At the
cell’s microscale, any natural flow field approximates locally
to a linear shear flow (see Fig. 2). For an artificial spherical
cell (vesicle) subject to small deformations due to a weak
mechanical stimulus, the tension distribution at the equator
(see Fig. 2) reads [29]

γ (ϕ) = γ0 + �γ (ϕ), (20)

�γ = − 5
4ηGR cos 2(ϕ − φ), (21)

η being the viscosity and φ being the phase angle difference
between the minimum tension point and the largest elongation
axis [29]. An MSC located in a high-tension zone has a
higher probability to open up. This spatial asymmetry creates
an angular bias in the fluctuations of the N time traces
S = {S1, . . . ,SN } across the cell, Si being the fraction of open
state of the ith MSC at location ϕ = ϕi . We prove that, by a
global statistical processing of S, a cell can infer the stimulus
direction. The uncertainty due to the ubiquitous and limiting
presence of noise is also derived.

B. Statistics for the shear-stress induced signal
at the cellular level

When exposing a cell to shear stress [see Fig. 2 and
Eq. (20)], the nonuniform perturbation in its membrane tension
�γ induces an uneven MSC redistribution across the cell.
Using the white-noise approximation, the conformational
state of the ith MSC at ϕi , subject to qi = �γ (ϕi)�A =

−Q cos 2(ϕi − φ) with Q = 5
4ηGR �A, is Si = 〈Si〉 + ηi

with

〈Si〉 = ki
on

ki
on + ki

off

= 1

1 + exp[−�heff − Q cos 2(ϕi − φ)]
,

(22)

and

〈ηiηj 〉 = 2

T
ki

offk
i
on(

ki
off + ki

on

)3 δij = σ 2
Si
δij , (23)

where σ 2
Si

takes the form of Eq. (9) at the ith location. The MSC
signal S is a vector of independent Gaussian random variables
with different means but approximately identical variances σ 2

S .
From Eq. (9), we find that σ 2

S decreases as T increases with
σ 2

S → 0 in the limit of T → ∞. Instead of time averaging
over long exposure to signal time T , we consider ensemble
averaging over m independent MSCs subject to the same
signal, thus, giving S = 1

m

∑m
k=1 sk . The variance associated

with this ensemble averaging is

σ 2
S = 1

m

konkoff

(kon + koff)2
. (24)

From Eqs. (9) and (24), one can establish that a single MSC
observed over time T is statistically equivalent to ensemble
averaging over m ≡ 1

2T (kon + koff) = T
2τ

independent MSCs.
This allows us to recast the white Gaussian noise component as

〈ηiηj 〉 = 1

m

ki
offk

i
on(

ki
off + ki

on

)2 δij . (25)

As we are working in the limit of small membrane deforma-
tions induced by a mild mechanical stimulus, we expand 〈Si〉
in small Q = 5

4ηGR �A up to the leading order,

〈Si〉 � 〈S〉 − μ cos 2(ϕi − φ), (26)

with

〈S〉 = kon

kon + koff

∣∣∣∣
Q=0

, (27)

and where μ = mσ 2
S Q is the signal amplitude. At the first

order in Q for Si , we also have

〈ηiηj 〉 � 1

m

koffkon

(koff + kon)2

∣∣∣∣
Q=0

δij = σ 2
S (Q = 0)δij . (28)

To summarize, at the leading order in Q,

Si ≈ 〈S〉 − mσ 2
S Q cos 2(ϕi − φ) + ηi, (29)

where {〈S〉,σ 2
S } = { kon

kon+koff
, konkoff
m(kon+koff )2 }|Q=0. The associated

signal-to-noise ratio (SNR) [26] is

κ ≡ μ2

σ 2
S

= m2σ 2
S Q2. (30)

C. Maximum likelihood estimation of the magnitude and
direction of the mechanostimulus

The signal (29) has a classical form—sinusoidal in phase
with added white Gaussian noise—commonly encountered in
signal processing applications [26]. Estimating the shear-flow
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direction for the cell is strictly equivalent to estimating the
phase φ of (29). Given the nonlinear nature of the relationship
between the mechanostimulus and the spatiotemporal signal
available to the cell, a nonlinear statistical estimation is
required. A nonlinear MLE of � = {Q,φ} can be achieved
by resorting to the jointly sufficient statistics [26] given by

z1 =
N∑

i=1

(Si − 〈S〉) cos 2ϕi, (31)

z2 =
N∑

i=1

(Si − 〈S〉) sin 2ϕi. (32)

The associated joint probability density function reads

p(Z) = 2

πσ 2
S N

exp

(
−Nμ2

4σ 2
S

+ μ

σ 2
S

(z1 cos 2φ − z2 sin 2φ)

)

× exp

(
− 1

Nσ 2
S

(
z2

1 + z2
2

))
, (33)

leading to the following expression:

p(Z) = 2e−Nκ/4

πσ 2
S N

exp

[
μ(z1 cos 2φ − z2 sin 2φ)

σ 2
S

− z2
1 + z2

2

Nσ 2
S

]
.

(34)

Thus, the likelihood function L = p(Z|�) is given by the
joint probability density function which gives access to the
log-likelihood,

ln L=−Nμ2

4σ 2
S

+ μ

σ 2
S

(z1 cos 2φ − z2 sin 2φ)− 1

Nσ 2
S

(
z2

1 + z2
2

)
,

= mQ(z1 cos 2φ − z2 sin 2φ) − m2Nσ 2
S

4
Q2. (35)

The maximum likelihood estimators for the vector parameter
� = {Q,φ} are defined to be the value that maximizes the
likelihood function over that allowable domain for � and it is
found from

∂ ln p(Z|�)

∂Q
(Q = Q̂MLE) = 0, (36)

∂ ln p(Z|�)

∂φ
(φ = φ̂MLE) = 0, (37)

yielding, respectively,

Q̂MLE =
2
√

z2
1 + z2

2

Nmσ 2
S

, (38)

φ̂MLE = −1

2
arctan

z2

z1
. (39)

The CRLB yields the respective variances of the MLE �̂MLE =
(Q̂MLE,φ̂MLE), which are calculated by means of the inverse
of the Fisher information matrix, which is the negative of the
expected value of the Hessian matrix [26],

σ 2
Q̂

= −
〈
∂2 ln L
∂Q2

〉−1

= 2

Nm2σ 2
S

, (40)

σ 2
φ̂

= −
〈
∂2 ln L

∂φ2

〉−1

= 1

2Nm2σ 2
S Q̂2

= 1

2Nκ
, (41)

where κ ≡ μ2/σ 2
S is the SNR. Both uncertainties in the signal

amplitude and phase are inversely proportional to m = T
2τ

and√
N , i.e., favoring longer signal exposure time T with as many

MSCs as possible.

D. Analysis of the results

Typically, eukaryotic cells are 10–100 μm across with
uniform MSC surface density on the order of 1/μm2 [6,30],
and the number of MSCs increases with the cell surface area A

as N = N0R
2. Given that Q ∼ R, we get the paramount fact

that the SNR κ varies like R4; this amounts to an enormous 104

ratio in SNRs for small and large eukaryotic cells. Larger cells
are considerably more effective at directional mechanosensing.
Interestingly, we also find that κ ∝ 1/σ 2

φ̂
, exactly like the

case of eukaryotic directional gradient chemosensing, despite
fundamental differences in signaling mechanisms [22].

Understanding how the SNR relates to cell characteristics—
specifically elastic and gating properties—allows one to
uncover some essential features of eukaryotic directional
mechanosensing. For a given T , the SNR reads

κ = nQ̂2 =
[
k0T

2

exp[−γ 2
0 A/(2KA) − γ0�A/2]

1 + exp(�h − γ0�A)

]
Q̂2, (42)

n being the number of switching events. Considering varying
prestresses γ0 in Eq. (42), one finds that κ achieves large
values about its maximum attained at the critical prestress
γc = �h/�A such that �heff = 0. At this point, it is worth
highlighting that the cortical cytoskeleton structurally supports
the fluid bilayer, thus, providing the cell membrane with a
shear rigidity that is lacking in simple bilayer vesicles [31].
Through membrane fluctuations and membrane trafficking, the
cell has the ability to regulate and to tune the prestress of its
lipid bilayer [6,31]—see Ref. [32] for more details on the case
of Dictyostelium cells. Note that one limitation of our model
is the lack of information with regard to the energy barrier
�h, which prevents us from explicitly finding the value of the
critical prestress γc = �h/�A.

It is revealing to study the relationship (41) between Q̂ and
exposure time T required by the cell to detect the stimulus di-
rection for different prestress values [see Fig. 3(a)]. Cells with
a near-critical prestress require a much shorter exposure to the
signal. It would be interesting to experimentally measure, for
various types of cells, the critical prestress and to compare it to
the actual prestress. According to our results, this experiment
should reveal a significantly much higher mechanosensitivity
of cells such that γ0 � γc. Strikingly, the scale of Q̂ can be
as small as 10−2kBT for a cell with 200 MSCs exposed over
T ∼ 103 s. This fact is clearly related to the growing evidence
of exquisite sensitivity of cells to mechanostimuli [1,3,6]. In
addition, cells having one or both of the characteristics of
near-critical prestress γ0 � γc and low gating energy barrier
�h, will benefit from a higher SNR, resulting in improved
directional mechanosensing capabilities. On the other hand,
cells not satisfying one of the above conditions or subjected to
a higher background noise, might see their SNR falling below
an estimation threshold point SNR κ∗—the point at which the
cell is no longer able to estimate the stimulus direction. Indeed,
this estimation process is essentially nonlinear—owing to the
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FIG. 3. (Color online) (a) Relationship between observation time
T and MLE estimated signal amplitude Q̂ for γ0/γc = 0.1, 1, 1.5;
(b) probability distribution function (PDF) of the phase estimate
for a true value φ = 0 for different SNR values κ . The follow-
ing values are used [14,20]: KA = 60kBT/nm2, �h = 38kBT , A =
30 nm2, �A = 10 nm2, γc = 1.0kBT/nm2, 1/k0 = 1 m s, and N =
200.

nonlinear relationship between the mechanostimulus and the
spatial signals registered by the cell—and, thereby, suffers
from a low SNR threshold effect induced by the appearance of
outlying peaks in the log-likelihood function [26,33]. Here, an
MLE is considered, but any other type of statistical estimation
that exhibits such a nonlinear threshold effect constitutes a
serious fundamental limit in the cell’s ability to effectively
perform directional mechanosensing at a low SNR [26]. It is
important noting that the very existence of this estimation
threshold is only contingent upon the nonlinear nature of
the relationship between the stimulus and the spatiotemporal
signal processed by the cell. No general analytical expression
for the estimation threshold point SNR κ∗ exists, even in
the particular case of the nonlinear MLE considered here.
However, Monte Carlo simulations could be considered to
numerically estimate κ∗ for any given nonlinear statistical
estimation techniques, including the MLE.

E. Specifics of high signal-to-noise ratios
cellular mechanosensing

At the other extreme, for large SNRs, MLE is asymp-
totically unbiased, efficient, and delivers a fine prediction
of the uncertainty in the mechanostimulus direction [see
Eq. (41)]. Expressing p(Z) using polar coordinates with
(z1,z2) = (ρ cos 2θ, − ρ sin 2θ ) where the latter minus sign
is introduced to obtain a symmetric PDF,

p(ρ,θ ) = 2

πσ 2
S N

e−Nκ/4 exp

(
μρ

σ 2
S

cos(2φ − 2θ ) − ρ2

Nσ 2
S

)
.

(43)

Hence, the symmetric kernel function is given by

p(θ ) =
∫ ∞

0
p(ρ,θ )dρ = 2

πσ 2
S N

e−Nκ/4

×
∫ ∞

0
ρ exp

(
μρ

σ 2
S

cos(2φ − 2θ ) − ρ2

Nσ 2
S

)
dρ, (44)

and the PDF of the phase φ estimate reads

p(θ ) = e−Nκ/4

π
(1 + √

πb(θ )eb2(θ){1 + erf[b(θ )]}), (45)

where erf is the canonical error function and

b(θ ) =
√

Nκ

2
cos 2(φ − θ ). (46)

We now consider the case of a high SNR κ , for which the
phase estimate will be near its true value. Therefore, using the
approximation cos 2(φ − θ ) � 1 and the identity cos2(x) =
1 − sin2(x) yields

p(θ ) � 1

π
exp(−Nκ/4) +

√
Nκ

4π
exp

[
−Nκ

4
sin2 2(φ − θ )

]

×
[

1 + erf

[√
Nκ

2

]]
. (47)

For high SNRs, the first term in the above equation and the
error function in the second term will be approximately 1. In
the limit κ → ∞, this PDF tends asymptotically to a classical
Gaussian PDF given by

p(θ ) �
√

Nκ

π
exp[−Nκ(φ − θ )2], (48)

for which the variance is directly accessible

σ 2
φ = 1

2Nκ
, (49)

and is found to be identical to the variance σ 2
φ̂

[see Eq. (41)]

obtained using the CRLB for φ̂MLE. Thus, the dependence
σ 2

φ̂
∝ 1/κ is asymptotically recovered and holds for κ > κ∗.

For κ < κ∗, σ 2
φ̂

rises sharply until a so-called no information
point is reached [33]. The no information region corresponds
to very low SNRs, i.e., κ → 0, where the PDF is nearly
uniform p(θ ) � 1/π , thus, preventing the cell from extracting
any directional information from S. As already mentioned
in the previous section, a closed-form expression of κ∗
is yet to be found for this nonlinear estimation problem.
However, a value for κ∗ and its asymptotic relationship
with the uncertainty in directional mechanosensing could
be established experimentally or computationally. The above
discussion is well illustrated by looking at the PDF of the
phase estimate [see Eq. (45)] for widely different SNRs shown
in Fig. 3(b): At a high SNR κ = 10−1, the PDF is almost
Gaussian, which is consistent with both the MLE results
(estimator and variance) and the asymptotic expression (48).
For an intermediate SNR κ = 10−2, the PDF deviates from its
asymptotic Gaussian form, whereas, the MLE deviates from
the CRLB. For even lower SNRs κ = 10−3 and κ = 0, the cell
has passed the estimation threshold point and has entered the
no information region. It should be added that the maximum
value and the tail of the PDF (45) for varying SNRs are vastly
different from those of the Gaussian PDF (48).

IV. CONCLUSIONS

Despite its relative simplicity, our biophysical model sheds
some light on the physical limits of cellular directional
mechanosensing, which prove to exhibit many similarities with
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its chemical counterpart: higher accuracy for large cells and
σ 2

φ̂
∝ 1/κ .
More specifically, we found that the signal-to-noise ratio

varies like R4, where R is a measure of the cell’s size.
Experimentally, this could easily be verified by considering
two types of amoebae of typical sizes approximately 10 and
100 μm, respectively, and by subjecting them to the same mild
mechanostimulus in the same environment, i.e., with the same
background noise.

This model also reveals how the biochemical nature of the
cell’s membrane impacts cellular directional mechanosensing.
Indeed, we showed the existence of a critical prestress which
entirely depends on the free energy barrier—this energy barrier
is fixed for one particular type of MSC. Therefore, for one
particular type of cell, if the prestress value for the lipid
bilayer happens to be close to the critical prestress, then

the mechanosensitive process benefits from a much higher
signal-to-noise ratio. This could be tested experimentally with
various different types of cells, having notably different natures
of their lipid bilayers and, hence, different prestress values.
This set of cells would have to be subjected to the same
mechanostimulus of decreasing magnitude under the same
environmental conditions.

Finally, we uncovered the existence of another fundamen-
tal limit in the cellular directional mechanosensing owing
to the nonlinear nature of the relationship between the
mechanostimulus and the spatial signals registered by the
cell. Indeed, all nonlinear statistical estimation techniques,
including the one used by the cell, intrinsically suffer from
the appearance of a low SNR threshold effect beyond
which the signal estimation can no longer be considered as
reliable.
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